期刊文献+

低维格拉斯曼流形鉴别分析 被引量:1

Low Dimension Discriminant Analysis on Grassmann Manifold
下载PDF
导出
摘要 图像集匹配需要解决如何对集合模型并度量模型之间的相似性的问题,为此提出一种维数约减的格拉斯曼流形鉴别分析方法并用于对象和人脸识别。首先引入投影映射将格拉斯曼流形上的基本元素表示成对应的投影矩阵。然后,为克服高维矩阵在小样本条件下不能有效描述样本分布的缺陷,通过投影度量学习对子空间的正交基矩阵降维得到一个低维、紧致的格拉斯曼流形以获得图像集更好地表达。最后投影到再生核希尔伯特空间中进行分类。在公开的视频数据库中的实验结果证明,该方法能够获得较高的正确率,是一种有效的基于集合的对象匹配和人脸识别方法。 The key issues of video based face recognition are the way to model facial images precision and high efficiency and measure the similarity between two sets. To end this, a Grassmann manifold dimension reduction method is proposed to improve the performance of image set matching. Firstly, a subspace constructed by an image set is presented as a point in a Grassmann manifold with a projection matrix. Then, a projection metric learning approach is applied to reduce the dimension of the orthogonal basis matrix to obtain a lower dimension and tighten Grassmann manifold. Finally, a kernel function mapped the orthogonal basis matrix from a Grassmann manifold to Euclidean space for classification. Extensive experimental results on shared video based dataset show that the proposed method is an effective object matching and face recognition method based on set-to-set matching.
作者 曾青松 钟闰禄 ZENG Qingsong;ZHONG Runlu(School of Information and Technology, Guangzhou Panyu Polytechnic, Guangzhou Guangdong 511483, China)
出处 《图学学报》 CSCD 北大核心 2017年第1期69-75,共7页 Journal of Graphics
基金 广东省自然科学基金项目(2015A030313807) 广州市属高校科研项目(1201610059) 广州市教育系统创新团队建设计划(1201610034) 广州番禺职业技术学院"十三五"科研项目(2016X002) 广东省高等职业教育教学改革项目(201401181)
关键词 子空间 集合匹配 格拉斯曼流形 投影度量 度量学习 subspace set matching Grassmann manifold projection metric metric learning
  • 相关文献

参考文献4

二级参考文献136

  • 1Yamaguchi O, Fukui K, Maeda K. Face recognition using tem- poral image sequence [ C ]//Proceedings of IEEE Conference on Automatic Face and Gesture Recognition. Nara, Japan: IEEE Computer Society, 1998:318-323.
  • 2Cevikalp H, Triggs B. Face recognition based on image sets [ C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE Computer Society, 2010:2567-2573.
  • 3Hu Y Q, Mian A S, Owens R. Face recognition using sparse ap- proximated nearest points between image sets[ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2012, 34(10) : 1992-2004.
  • 4Wang R P, Shan S G, Chen X L, et al. Manifold-manifold dis- tance with application to face recognition based on image set [ C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA : IEEE ComputerSociety, 2008 : 1-8.
  • 5Wang R P, Shan S G, Chert X L, et al. Maximal linear embed- ding for dimensionality reduction [ J ]. IEEE Transactions on Pa- ttern Analysis and Machine Intelligence, 2011, 33:1776-1792.
  • 6Wang R P, Chen X L. Manifold discriminant analysis[ C]//Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE Computer Society, 2009:429-436.
  • 7. Wang R P, Guo H M, Davis L S, et al. Covariance discrimina- tive learning: a natural and efficient approach to image set classi- fication[ C ]//Proceedings of IEEE Conference on Computer Vi- sion and Pattern Recognition. Providence, RI, USA: IEEE Com- puter Society, 2012:2496-2503.
  • 8Shirazi S, Alavi A, Harandi M T, et al. Graph embedding dis- criminant analysis on Grassmannian manifolds for improved image set matching[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA : IEEE Computer Society, 2011:2705-2712.
  • 9Yan S C, Xu D, Zhang B Y, et al. Graph embedding and exten- sions: a general framework for dimensionality reduction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007, 29:40-51.
  • 10Jayasumana S, Hartley R, Salzmann M, et al. Kernel methods on the riemannian manifold of symmetric positive definite matrices E C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA : IEEE Computer Society, 2013.

共引文献34

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部