期刊文献+

Fully Bayesian reliability assessment of multi-state systems with overlapping data 被引量:2

Fully Bayesian reliability assessment of multi-state systems with overlapping data
下载PDF
导出
摘要 The failure data at the system level are often limited, resulting in high uncertainty to system reliability assessment. Integrating data drawn from various structural levels of the target system (e.g. the system, subsystems, assemblies and components), i.e. the multi-level data, through Bayesian analysis can improve the precision of system reliability assessment. However, if the multi-level data are overlapping, it is challenging for Bayesian integration to develop the likelihood function. Especially for multi-state systems (MSS), the Bayesian integration with overlapping data is even more difficult. The major disadvantage of previous approaches is the intensive computation for the development of the likelihood function caused by the workload to opt the appropriate combinations of the vectors of component states consistent with the overlapping data. An improved fully Bayesian integration approach from a geometric perspective is proposed for the reliability assessment of MSS with overlapping data. In this method, a specific combination of component states is regarded as a state vector, which leads to a specific system state of the MSS, and all state vectors generate a system state space. The overlapping data are regarded as the constraints which create hyperplanes in the system state space. And a point in a hyperplane corresponds to a particular combination of the state vectors. In the light of the features of the constraints, the proposed approach introduces space partition and hyperplane segmentation, which reduces the selection workload significantly and simplifies the likelihood function for overlapping data. Two examples demonstrate the feasibility and efficiency of the proposed approach. © 1990-2011 Beijing Institute of Aerospace Information. The failure data at the system level are often limited, resulting in high uncertainty to system reliability assessment. Integrating data drawn from various structural levels of the target system (e.g. the system, subsystems, assemblies and components), i.e. the multi-level data, through Bayesian analysis can improve the precision of system reliability assessment. However, if the multi-level data are overlapping, it is challenging for Bayesian integration to develop the likelihood function. Especially for multi-state systems (MSS), the Bayesian integration with overlapping data is even more difficult. The major disadvantage of previous approaches is the intensive computation for the development of the likelihood function caused by the workload to opt the appropriate combinations of the vectors of component states consistent with the overlapping data. An improved fully Bayesian integration approach from a geometric perspective is proposed for the reliability assessment of MSS with overlapping data. In this method, a specific combination of component states is regarded as a state vector, which leads to a specific system state of the MSS, and all state vectors generate a system state space. The overlapping data are regarded as the constraints which create hyperplanes in the system state space. And a point in a hyperplane corresponds to a particular combination of the state vectors. In the light of the features of the constraints, the proposed approach introduces space partition and hyperplane segmentation, which reduces the selection workload significantly and simplifies the likelihood function for overlapping data. Two examples demonstrate the feasibility and efficiency of the proposed approach. © 1990-2011 Beijing Institute of Aerospace Information.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期187-198,共12页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61304218) the Beijing Higher Education Young Elite Teacher Project(YETP1123)
关键词 GEOMETRY INTEGRATION Reliability Reliability analysis Reliability theory SATELLITES Vector spaces VECTORS Geometry Integration Reliability Reliability analysis Reliability theory Satellites Vector spaces Vectors
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献5

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部