期刊文献+

α-淀粉酶抑制剂生物合成途径和代谢流分析(英文) 被引量:2

Application of Biosynthesis Pathway Analysis and Metabolic Flux Analysis for Optimization of Fermentation of α-Amylase Inhibitor
下载PDF
导出
摘要 为提高糖类的利用效率,加强糖类代谢向生成α-淀粉酶抑制剂的方向流动,提高α-淀粉酶抑制剂产量,对天蓝黄链霉菌合成α-淀粉酶抑制剂的代谢网络进行分析,找出影响α-淀粉酶抑制剂合成的代谢流量分配规律和关键节点,并且应用代谢流分析的方法研究了谷氨酸钠对α-淀粉酶抑制剂发酵中后期胞内代谢流分布的影响。结果表明:在α-淀粉酶抑制剂分批发酵过程中,未流加谷氨酸钠时合成α-淀粉酶抑制剂的代谢流量为1.84;在发酵培养基中流加谷氨酸钠使其质量浓度维持在4.0 g/L后,α-淀粉酶抑制剂生物合成的代谢流增长至3.18。因此发酵过程中流加谷氨酸钠能够改变α-淀粉酶抑制剂生物合成途径的关键节点6-磷酸葡萄糖、7-磷酸景天庚酮糖及谷氨酸的代谢流分布,提高α-淀粉酶抑制剂生物合成途径的代谢流量。 This study aimed to improve the yield ofα-amylase inhibitor and the efficiency of carbohydrate utilization duringthe fermentation of Streptomyces coelicoflavus(S.coelicoflavus).The metabolic network leading to the biosynthesis ofα-amylase inhibitor was analyzed to find out the key nodes which influenced the production ofα-amylase inhibitor.Theeffects of sodium glutamate on the metabolic flux distributions during the middle and late periods of fermentation werestudied,and metabolic flux analysis forα-amylase inhibitor production at pseudo-steady state was also conducted.Theresults showed that the metabolic flux channeled to theα-amylase inhibitor biosynthesis pathway was1.84in batchwisefermentation without the addition of sodium glutamate,while,with the addition of sodium glutamate(the concentrationwas maintain at4.0g/L),the metabolic flux was3.18,suggesting that the addition of sodium glutamate could change themetabolic flux distributions of the key nodes(glucose-6-phosphate,sedoheptulose-7-phosphate,and glutamate)and enhancethe biosynthesis ofα-amylase inhibitor.
作者 张洪志 徐庆阳 曹华杰 白芳 陈宁 白钢 ZHANG Hongzhi;XU Qingyang;CAO Huajie;BAI Fang;CHEN Ning;BAI Gang(China National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology,Tianjin University of Science and Technology, Tianjin 300457, China;College of Pharmacy, Nankai University, Tianjin 300071, China)
出处 《食品科学》 EI CAS CSCD 北大核心 2017年第4期118-124,共7页 Food Science
基金 天津市应用基础与前沿技术研究计划项目(14JCYBJC28500)
关键词 Α-淀粉酶抑制剂 代谢流分析 谷氨酸钠 α-amylase inhibitor metabolic flux analysis sodium glutamate
  • 相关文献

参考文献1

二级参考文献11

  • 1顾觉奋,陈菁.阿卡波糖生物合成和发酵工艺研究进展[J].国外医药(抗生素分册),2006,27(3):122-125. 被引量:17
  • 2Wehmeier UF, Piepersberg W. Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose [J]. Appl Microbiol Biotechnol, 2004, 63 (6) : 613-625.
  • 3Choi BT, Shin CS. Isolation and characterization of a novel intracellular glucosyltransferase from the acarbose producer Actinoplanes sp. CKD485-16 [J]. Appl Microbiol Biotechnol, 2004, 65 (3) : 273-280.
  • 4Hemker M, Stratmann A, Goeke K, et al. Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50 [J]. JBacteriol, 2001, 183 (15) : 4484-4492.
  • 5Lee S, Sauerbrei B, Niggemann J, et al. Biosynthetic studies on the.α-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit [J]. J Antibiot, 1997, 50 (11) : 954-960.
  • 6Bowers SG, Mahmud T, Floss HG. Biosynthetic studies on the α-glucosidase inhibitor acarbose: the chemical synthesis of dTDP-4-amino-4,6-dideoxy-α-D-glucose [J]. Carbohydr Res, 2002, 337 (4) : 297-304.
  • 7Lee JS, Hai T, Pape H, et al. Three trehalose synthetic pathways in the acarbose-producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component C [J]. Appl Microbiol Biotechnol, 2008, 80 (5) : 767-778.
  • 8Choi BT, Shin CS. Reduced formation of byproduct component C in acarbose fermentation by Actinoplanes sp. CKD485-16 [J]. Biotechnol Prog, 2003, 19 (6) : 1677-1682.
  • 9Beunink J, Schedel M, Steiner U. Osmotically controlled fermentation process for the preparation of acarbose: US, 6130072 [P]. 2000-10-10.
  • 10Rodriguez JF, De Lucas A, Carmona M, et al. Application of ion exchange to purify acarbose from fermentation broths [J]. Biochem Eng, 2008, 40(1) : 130-137.

共引文献6

同被引文献29

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部