期刊文献+

随机网格回归Monte Carlo双UAVs最优目标协调跟踪

Stochastic Mesh Regression Monte Carlo Based UAVs Optimal Target Tracking
下载PDF
导出
摘要 针对多个无人机(unmanned aerial vehicle,UAV)执行基于视觉的目标跟踪的最佳协调问题,提高不可预知的地面目标的最佳结合点的视觉测量效果,提出了一种基于随机网格回归Monte Carlo的UAV最优目标跟踪策略。首先,通过无人机动力学和目标动力学分析,获得双UAV情况下的随机最优协调控制目标;其次,针对提出的控制目标,引入Monte Carlo求解方案,同时为解决标准Monte Carlo方案中存在的状态空间维度较高,计算复杂且精度不高的问题,利用随机网格方式构建回归Monte Carlo方案,实现UAV的最优协调控制;最后,通过仿真实验验证了所提方法的有效性。 In order to solve the optimal coordination problem of visual target tracking for unmanned aerial vehicles (UAVs), and improve the visual measurement result in the best combination of unpredictable target on the ground, this paper presents the stochastic mesh regression Monte Carlo based UAVs optimal target tracking algorithm. Firstly, the stochastic optimal coordinated control target is obtained by the analysis of UAV dynamics and target dynamics. Secondly,for the control objectives, the Monte Carlo method is introduced, and the random grid based regression Monte Carlo scheme is also designed to solve the high state space dimension of the standard Monte Carlo scheme, so as to solve the complex calculation and low precision, which can realize UAVs optimal coordinated control. Finally, simulation experiments are carried out to verify the effectiveness of the proposed method.
作者 孟凡琨 巨永锋 文常保 MENG Fankun;JU Yongfeng;WEN Changbao(School of Electronic and Control Engineering, Chang..an University, Xi..an 710064, China)
出处 《计算机科学与探索》 CSCD 北大核心 2017年第3期450-458,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61473047 中央高校基本科研业务费专项资金No.2014G3322008~~
关键词 随机网格 回归MonteCarlo 无人机(UAV) 目标跟踪 random grid regression Carlo Monte unmanned aerial vehicle (UAV) target tracking
  • 相关文献

参考文献4

二级参考文献56

  • 1黄旭,王常虹.磁强计和微机械陀螺/加速度计组合定姿的扩展卡尔曼滤波器设计[J].黑龙江大学自然科学学报,2005,22(4):454-458. 被引量:13
  • 2李耀明,徐立章,向忠平,邓玲黎.日本水稻种植机械化技术的最新研究进展[J].农业工程学报,2005,21(11):182-185. 被引量:73
  • 3李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J].自动化学报,2007,33(1):101-104. 被引量:52
  • 4Lummus R. Mission battle management system fighter engagement manager concept[R]. AIAA 2003-2857, 2003.
  • 5Offati-Saber R. Distributed Kalman filtering for sensor networks[C] // Proceedings of the IEEE Conference on Decision and Control. 2007:5492-5498.
  • 6Offati-Saber R, Sandell N F. Distributed tracking in sen sor networks with limited sensing range[C]//Proceedings of the American Control Conference. 2008: 3157-3162.
  • 7Casbeer D W, Beard R W. Multi static radar target tracking using information consensus filters[R]. AIAA 2009- 6223, 2009.
  • 8Casbeer D W, Beard R. Distributed information filtering using consensus filters[C] // Proceedings of the American Control Conference. 2009 :1882-1887.
  • 9Mutambara A O O. Information based estimation for both linear and nonlinear systems[C] // Proceedings of the American Control Conference. 1999: 1329- 1333.
  • 10Wang L, Wang N, Zhu H Y. Consensus based distributed unscented information filtering for air mobile sensor networks[C] // Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics. 2010: 492-495.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部