期刊文献+

自适应尺度的快速相关滤波跟踪算法 被引量:6

Fast Scale-Adaptive Correlation Tracking
下载PDF
导出
摘要 针对常规的相关滤波跟踪算法不能很好地适应目标尺度变化,而基于尺度金字塔的相关滤波跟踪算法虽然取得较高的跟踪精度,却在跟踪速度上大打折扣的问题,提出一种简单快速的自适应目标尺度的相关滤波跟踪算法.首先对目标模板进行对数极坐标变换,把目标的尺度变化转化为位移信号;然后对目标模板变换前后分别提取HOG特征,并建立位移与尺度的滤波模型;最后在相关滤波框架下同步跟踪目标的位移与尺度因子,并将二者融合得到目标跟踪框.实验结果表明,该算法的跟踪精度略低于基于尺度金字塔的相关跟踪算法,而跟踪速度却达到后者的2倍以上. Since conventional correlation tracking algorithm cannot adapt to scale variations of the target well,and the scale-pyramid based correlation trackers gain higher precision but sacrifice more speed, this paper proposes a simple and efficient scale-adaptive correlation tracking method. Firstly, we converted the target scale to translation signals by taking log-polar transformation. Then, we extracted HOG features from target in Cartesian and log-polar coordinates, and built translation and scale correlation filter models. Finally, the translation and scale factor were tracked synchronously in the framework of correlation filter and fused into tracking bounding rectangle. Experiment results demonstrate that our tracker achieves much little loss in precision comparing with scale-pyramid based correlation trackers, but performs more than twice as the latter ones in speed.
作者 马晓楠 刘晓利 李银伢 Ma Xiaonan;Liu Xiaoli;Li Yinya(National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094;School of Automation, Nanjing University of Science and Technology, Nanjing 210094)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第3期450-458,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61273076)
关键词 目标跟踪 尺度自适应 相关滤波器 对数极坐标变换 object tracking scale-adaptive correlation filter log-polar transformation
  • 相关文献

参考文献1

二级参考文献22

  • 1BAKER S, MATTHEWS I. Lucas-kanade 20 years on: a unifying framework[J]. International Journal of Computer Vision, 2004, 56(3): 221-255.
  • 2KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: automatic detection of tracking failures[C]. International Conference on Pattern Recognition, Istanbul, Turkey, IEEE, 2010: 23-26.
  • 3KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 6(1): 1-14.
  • 4COLLINS R T, LIU Y, LEORDEANU M. Online selection of discriminative tracking features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
  • 5AVIDAN S. Support vector tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.
  • 6GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting[C]. In Proceedings British Machine Vision Conference (BMVC), Edinburgh, UK, springer,2006, 1(5): 47-56.
  • 7BOLME D S, DRAPER B A, BEVERIDGE J R. Average of synthetic exact filters[C]. IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL,USA, IEEE,2009:2015-2022.
  • 8DAVID S, BOLME J, ROSS B B A, et al. Visual object tracking using adaptive correlation filters[C].CVPR, San Francisco, USA, IEEE, 2010: 2544-2550.
  • 9HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 996-1010.
  • 10DANELLJAN M, SHAHBAZ KHAN F, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA,IEEE, 2014.

同被引文献27

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部