期刊文献+

基于节点集Top-k频繁模式挖掘算法 被引量:2

Top-k frequent patterns based on nodesets
下载PDF
导出
摘要 频繁模式挖掘的模式数量通常过于巨大,在实际应用中只有少量的频繁模式被使用。Top-k频繁模式挖掘通过排列模式频数限制频繁模式的数量,有效提高了算法效率。提出了TPN(Top-k-Patterns based on Nodesets)算法,该算法使用了节点集的概念,将数据压缩于Poc-tree,通过Top-k-rank表重新计算最小支持度限制生成候选模式的数量。实验通过与ATFP,Top-k-FP-growth算法比较,证明该算法有较好的效率。 The number of mined patterns is usually too large and a small number of frequent patterns are used in real application.Therefore, the mining of top-rank-k frequent patterns which limits the number of mined frequent patterns by ranking them in frequency, has improved the efficiency of the algorithm. This paper proposes the TPN algorithm for mining top-k frequent patterns. The TPN employs a new data structure, Nodesets, to represent patterns, compressing the data to Poc-tree and computing min support patterns to limit candidate items by the top-k- rank table. The experiments are conducted to evaluate TPN and ATFP, Top-k-FP-growth in terms of mining time for two datasets. The experimental results show that TPN is more efficient and faster.
作者 孙俊 张曦煌 SUN Jun,;ZHANG Xihuang(School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第6期101-105,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61170120)
关键词 数据挖掘 TOP-K 频繁模式 节点集 data mining top-k frequent patterns nodesets
  • 相关文献

参考文献2

二级参考文献36

  • 1Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]//Proc. Of the 20^th Intl. Conf.on Very Large Databases (VLDB'94), Santiago, Chile, Sept, 1994, 487-499.
  • 2Goethals B. The FIMI Repository[EB]. http://fimi.es.helsinki.fi, 2003.
  • 3Hirate Y, Iwahashi E, Yamaha H. TF2P-growth: An Efficient Algorithm for Mining Frequent Patterns without Any Thresholds[C]//Proc. of ICDM04. Brighton, UK, October, 2004.
  • 4Quang T M, Oyanagi S, Yamazaki K. KxMiner: An Efficient Algorithm for Mining Top-K Frequent Patterns[C]//LNAI 4093, Springer-verlag, Berlin, Heidelberg, 2006, 436-447.
  • 5Quang T M, Oyanagi S, Yarnazaki K. Mining the K-most Interesting Frequent Pallems Sequentially[C]//Proc. of Intelligent Data Engineering and Automated Lerning (IDEAL06), 2006, 620 - 628.
  • 6HaHan J W, Pei J, Yin Y W. Mining frequent itemsets without candidate generation. In: The 2000 ACM SIGMOD International Conference on Management of data (SIGMOD’00), New York, 2000. 1-12.
  • 7AgAgrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: The 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD’93), Washington, 1993. 207-216.
  • 8HaHan J, Cheng H, Xin D, et al. Frequent itemset mining: current status and future directions. Data Min Knowl Discov,2007, 15: 55-86.
  • 9BaBaralis E, Cerquitelli T, Chiusano S. IMine: index support for item set mining. IEEE TKDE J, 2009, 21: 493-506.
  • 10ZaZaki M J, Gouda K. Fast vertical mining using diffsets, In: The 9th ACM SIGKDD International Conference on. Knowledge Discovery and Data Mining (SIGKDD’03), Washington, 2003. 326-335.

共引文献25

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部