期刊文献+

优化粒子群算法的神经网络光伏发电预测 被引量:3

下载PDF
导出
摘要 随着我国近些年大力的发展可再生新能源,光伏发电系统的装机容量持续增加。然而其发电功率由于受到气象因素变化的影响,具有很大的间歇性和随机性。由此看来光伏发电系统的并网接入会增加电网系统的复杂度,影响电网系统现有的裕度和发电计划,进而可能导致系统崩溃。提高光伏系统的预测精度,有助于提高电力系统的运行稳定性。本文通过对粒子群算法进行改进,提高粒子群算法的全局收敛性,用改进的粒子群算法优化了神经网络光伏发电预测模型。最后通过预测数据与实测数据的比较,验证本文所提方法的有效性。
出处 《山东工业技术》 2017年第6期148-150,共3页 Journal of Shandong Industrial Technology
  • 相关文献

参考文献2

二级参考文献16

  • 1飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2003:116-125.
  • 2Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on PowerElectronics, 2005, 20(4): 963-973.
  • 3Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J] Industrial Electronics, 2006, IEEE 53(4) Transactions on 1027-1035.
  • 4Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points photovoltaic power systems[J]. IEEE Transactions in onIndustrial Electronics, 2006, 53(4): 1017-1026.
  • 5Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for asingle-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1):97-109.
  • 6'Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-aheadgenerating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society GeneralMeeting, 2007.
  • 7Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slowtransients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on EnergyConversion, 1989, 4(2): 184-190.
  • 8Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEETransactions on Energy Conversion, 1999, 5(1):8-14.
  • 9Mellit A, Arab A H, Khorissi N, et al. An ANFIS-based forecasting for solar radiation data fromsunshine duration and ambient temperature[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 10Sera D, Teodorescu R, Hantschel J, et al. Optimized maximum power point tracker for fast-changingenvironmental conditions[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2629-2637.

共引文献72

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部