期刊文献+

工件加工时间是开工时间线性函数的排序博弈问题

The Bargaining Problem on Scheduling with Linear Processing Time of Its Start Time
下载PDF
导出
摘要 工件加工过程中存在这样的情况:一个工件加工者无法独自完成一整批工件的加工任务,于是在排序研究中考虑多人合作共同加工一批工件的问题就应运而生了。讨论两人合作加工一批工件,每人提供一台机器用于加工,工件的加工时间是其开工时间的简单线性函数,以最小的最大完工时间为加工成本。给出最优工件划分,将工件分配给两人进行加工,让每个参与者都能获得合理的收益,从而愿意合作。 There is such a situation in workpiece processing:a processor is not able to undertake all processing jobs alone.So the new scheduling problems come into being,where many people work together to process a batch of workpieces.In this paper,we discuss the problem where two persons process a batch of workpieces by cooperation.Each person is offered a single machine and does each job with linear processing time of its start time,and his processing cost is defined as the smaller maximum makespan.An optimal division of those jobs is proposed and assigned to the two persons respectively so that each participant can get a satisfactory return and be willing to cooperate.
作者 金霁 JIN Ji(Department of Mathematics and Physics,Suzhou Vocational University,Suzhou 215104,China)
出处 《苏州市职业大学学报》 2017年第1期41-44,共4页 Journal of Suzhou Vocational University
关键词 加工时间 线性函数 最大完工时间 合作收益 排序 processing time linear function maximum makespan cooperative profit scheduling
  • 相关文献

参考文献7

二级参考文献28

  • 1NASH J F. The bargaining problem[J]. Econometrica, 1950, 18:155-162.
  • 2NASH J F. Two person cooperative games[J]. Econometfica, 1953, 21:128-140.
  • 3NAGAHISA R, TANAK M. An axiomatization of the Kalai-Smorodinsky solution when the feasible sets can be finite[J]. Social Choice and Welfare, 2002, 19:751-761.
  • 4MARIOTTI M. Nash bargaining theory when the number of alternatives can be finite[J]. Social Choice and Welfare, 1998, 15:413-421.
  • 5LAHIRI S. Axiomatic characterization of the Nash and Kalai-Smorodinsky solutions for discrete bargaining problems[J]. Pure Mathematics and Applications, 2003, 14:207-220.
  • 6GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5:287-326.
  • 7Gu Yanhong,Chen Quanle.SOME EXTENDED KNAPSACK PROBLEMS INVOLVING JOB PARTITION BETWEEN TWO PARTIES[J].Applied Mathematics(A Journal of Chinese Universities),2007,22(3):366-370. 被引量:8
  • 8Chen Q L,Cai X Q.Application of NBS for a negotiable third-party scheduling problem with a due window,Proceeding of ICSSSM'04,2004,1:116-119.
  • 9Abhinay M.Bargaining Theory with Applications,Cambridge,U K,New York:Cambridge University Press,1994.
  • 10Kellerer H,Pferschy U,Disinger D.Knapsack Problems,Berlin,Heidelberg:Springer-Verlag,2004.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部