摘要
为了解决以往正则最小二乘法求权重向量时遇到的矩阵接近奇异而无法求逆的问题,采用广义逆矩阵的方法求多层径向基函数网络中各层的权重向量,并将这种方法引至多层径向基函数网络的遗传算法中。采用实函数逼近,混沌时间序列建模与预测等仿真实验对算法进行验证。结果表明,采用广义逆矩阵的方法要比正则最小二乘法在逼近精度上高1至2个数量级。
In order to solve the problem that maxtrice are nearly singular when using regular least squares method,a method of generalized inverse matrix was employed to obtain the weight vectors of each layer in the multilayer radial basis function network,which was introduced to the genetic algorithm for training multilayer radial basis function networks.By using real function approximation,chaotic time series modeling and forecasting simulation experiments,the algorithm was verified.The results show that the generalized inverse matrix method is much more better than regular least squares method on the approximation precision,which can be up to a1to2orders of magnitude.
作者
盛国敏
庄健
SHENG Guomin;ZHUANG Jian(School of Business, Anhui University of Technology, Ma'anshan 243032, China)
出处
《安徽工业大学学报(自然科学版)》
CAS
2016年第4期390-395,共6页
Journal of Anhui University of Technology(Natural Science)
关键词
多层径向基函数网络
遗传算法
广义逆矩阵
实函数逼近
混沌时间序列
multilayer radial basis function networks
genetic algorithm
generalized inverse matrix
real function approximation
chaos sequence