期刊文献+

SnO_2纳米棒负载Pd-Sb催化甲酸电氧化 被引量:1

Electrocatalytic Oxidation of Formic Acid on Pd-Sb Doping SnO_2 Nanorod
下载PDF
导出
摘要 采用溶剂热法制备了SnO_2纳米棒载体,用溶剂热还原法制备了Pd/SnO_2催化剂和不同Pd/Sb原子数比的系列PdSb/SnO_2复合催化剂。用XRD、SEM、TEM、EDS等手段对样品进行分析表征,并以循环伏安法对比评价催化剂对甲酸的电催化氧化性能。表征结果表明,制备所得SnO_2纳米棒载体为针状,大小均匀,平均直径为100 nm;负载所得催化剂中活性粒子大小约为13.5 nm,掺杂Sb后,粒径约为9.5 nm。电催化氧化性能对比结果表明,Pd/Sb原子数比为4:1的Pd_4Sb/SnO_2复合催化剂对甲酸的氧化具有较好的催化能力,当E=0.25 V(vs SCE)时,Pd_4Sb/SnO_2上甲酸氧化的峰电流密度达到25 mA/cm^2,远远高于Pd/SnO_2催化剂。 SnO2nanorod carrier was prepared by the solvothermal method,and the Pd/SnO2catalysts and aseries of PdSb/SnO2composite catalysts with different Pd/Sb atomic ratios were prepared by thesolvothermal reduction method.The samples were characterized by XRD,SEM,TEM and EDS.Cyclicvoltammetry was used to investigate the catalytic activity of the Pd/SnO2and PdSb/SnO2catalysts on theformic acid oxidation.The results revealed that SnO2nanorod carrier was needle-shaped and its averagediameter was about100nm;The active particle size of the supported catalyst was about13.5nm,while itwas about9.5nm after the addition of Sb.The comparison results of electrocatalytic oxidation showed thatPd4Sb/SnO2(with nPd:nSb=4:1)catalyst exhibited the best catalytic activity.And the current density of thePd4Sb/SnO2catalyst was about25mA/cm2when E=0.25V(vs SCE)which is far higher than that of thePd/SnO2.
作者 何乌日嘎木拉 李宏霞 石乐乐 陆航 张益佳 孙丽美 HE Wurigamula;LI Hongxia;SHI Lele;LU Hang;ZHANG Yijia;SUN Limei(College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000, Neimenggu, China)
出处 《贵金属》 CAS CSCD 北大核心 2017年第1期1-5,共5页 Precious Metals
基金 国家自然科学基金(21003070 21463017) 内蒙古自然科学基金(2012MS0208)
关键词 催化化学 直接甲酸燃料电池 SNO2纳米棒 catalytic chemistry direct formic acid fuel cell SnO2 nanorods Pd Sb
  • 相关文献

参考文献5

二级参考文献69

  • 1胡风平,沈培康.乙醇在碳修饰的二氧化钛纳米管负载的钯电催化剂上的催化氧化[J].催化学报,2007,28(1):80-84. 被引量:12
  • 2Heinzel A, BarragOn V M. A Review of The State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells- J]. J Power Sources, 1999,84:70-74.
  • 3Kuver A, Vielstich W. Investigation of Methanol Crossover and Single Electrode Performance During PEMDMFC Operation:A Study Using A Solid Polymer Electrolyte Membrane Fuel Cell System [ J ]. J Power Sources, 1998,74: 211- 218.
  • 4Femandez L L, Walsh D A, Bard A J. Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning Electrochemical Microscopy. M-Co( M : Pd, Ag, Au) [ J ]. J Am Chem Soc ,2005,127( 1 ) :357-365.
  • 5Fernandez J L, Raghuveer V, Manthiram A, et al. Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells[J]. J Am Chem Soc,2005,127(38) :13100-13101.
  • 6Raghuveer V, Manthiram A, Bard A J. Pd-Co-Mo Electrocatalyst for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. J Phys Chem B,2005,109:22909-22912.
  • 7Raghuveer V, Ferreira P J, Manthiram A. Comparison of Pd-Co-Au Electrocatalysts Prepared by Conventional Borohydride and Microemulsion Mmethods for Oxygen Reduction in Fuel Cells [ J ]. Electrochem Commun, 2006,8 ( 5 ) : 807-814.
  • 8Tarasevich M R, Zhutaeva G V, Bogdanovskaya V A, et al. Oxygen Kinetics and Mechanism at Electrocatalysts on the Base of Palladium-iron System[ J ]. Electrochim Acta ,2007,52( 15 ) :5108-5118.
  • 9Zhang L, Lee K,Zhang J J. The Effect of Heat Treatment on Nanoparticle Size and ORR Activity for Carbon-supported Pd-Co Alloy Electrocatalysts [ J ]. Electrochim Acta,2007,52 (9) : 3088-3094.
  • 10Song S Q, Wang Y, Panagiotis Tsiakaras, et al. Direct Alcohol Fuel Cells:A Novel Non-platinum and Alcohol Inert ORR Eleetrocatalys|[ J]. Appl Catal B,2008,78(3/4) :381-387.

共引文献13

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部