期刊文献+

三维空间中基于改进的粒子群算法的节点定位研究 被引量:1

Research on Node Localization in Three-Dimensional Space Based on Improved Particle Swarm Algorithm
下载PDF
导出
摘要 三维空间下的节点定位一直都是无线传感中的主要研究方向,粒子群算法作为常用的计算节点定位的方法存在一定的误差,本文首先在该算法的基础上引入了凸函数的惯性权值和信任度系数,前者使得粒子能够在局部范围内获得最优解,避免陷入局部最优,后者使得不同性质的粒子能够在全局范围中获得最优解,其次,分析目标定位误差函数,使用泰勒级数对其进行优化,使得定位精度得到提高。仿真实验说明本文算法在锚节点数量,节点通信半径和总节点个数等方面提高了节点定位精度,具有很好的应用前景。 Node localization in3D space has always been the main research direction in wireless sensor,and as a common method to calculate node localization,particle swarm algorithm has certain errors.Based on this algorithm,this paper first introduces the inertia weight and confidence coefficient of the convex function.The former makes the particle obtain the optimal solution within local range and avoids it from falling into local optimum.The latter makes particles of different properties obtain the optimal solution within the global range.Secondly,this paper analyzes the target localization error function and optimizes it with the Taylor series so as to improve the localization accuracy.Simulation experiment shows that algorithm in this paper has improved the node localization accuracy in terms of the amount ofanchor nodes,node communication radius and total amount of nodes,so it has good application prospect.
作者 王婷婷 聂利颖 Wang Tingting;Nie Liying(Zhengzhou Chenggong University of Finance and Economics,Zhengzhou 451200,China)
出处 《科技通报》 北大核心 2017年第3期193-197,共5页 Bulletin of Science and Technology
基金 河南省科技厅科技攻关项目(162102210367)
关键词 三维空间 无线传感 凸函数的惯性权值 信任度系数 3D space wireless sensor inertia weight of the convex function confidence coefficient
  • 相关文献

参考文献7

二级参考文献50

  • 1郝志凯,王硕.无线传感器网络定位方法综述[J].华中科技大学学报(自然科学版),2008,36(S1):224-227. 被引量:14
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3廖先林,张铨荣,王光兴,赵林亮.无线传感器网络节点定位问题研究[J].武汉理工大学学报(信息与管理工程版),2007,29(5):47-50. 被引量:5
  • 4Buratti C, Conti A, Dardari D, et al. An overview on wireless sen- sor networks technology and evolution [ J]. Sensors, 2009,9 (9) : 6869 - 6896.
  • 5Boukerche A,Oliveira H A B F,Nakamura E F,el al. Localiza- tion systems for wireless sensor networks [ J ]. IEEE Wireless Communications ,2007,14(6) :6 - 12.
  • 6Mao G Q, Fidan B, Anaderson B D O. Wireless sensor network localization techniques [ J 1. Computer Networks, 2007,51 ( 10 ) : 2529 - 2553.
  • 7Srirangarajan S, Tewfik A H, Luo Z Q. Distributed sensor network localization using SOCP relaxation [ J ]. IEEE Transactions on Wireless Communications ,2008,7 ( 12 ) :4886 - 4895.
  • 8Vemula M, Bugallo M E, Djuric P M. Sensor self-localization with beacon position uncertainty [ J ]. Signal Processing, 2009, 89(6) :1144 - 1154.
  • 9Lui K W K, Ma W K, So I-I C, et al. Semi-definite programming algorithms for sensor network node localization with uncertainties in anchor positions and/or propagation speed [ J ]. IEEE Transac- tions on Signal Processing,2009,57 (2) :752 -763.
  • 10Wan ]iangwen, Yu Ning, Feng Renjian, et al. Localization refine- ment for wireless sensor networks I J J. Computer Communica- tions,2009,32( 13 - 14) :1515 - 1524.

共引文献20

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部