期刊文献+

结合运动特征的AdaBoost层次增强算法 被引量:2

AdaBoost hierarchical enhancement algorithm combined with moving features
下载PDF
导出
摘要 随着高分辨率传感器成为视频获取的主流,Ada Boost算法所面临的主要问题是置入级联分类器待检测窗口数过多。提出一种Ada Boost人脸检测层次增强算法,以加快人脸检测速度。从整体目标运动与局部人脸运动两个层次出发,以矩形块为计算单位,根据相关性原则,提取运动目标区域;以运动特征为基础,结合主成分分析获得运动特征子空间;通过子空间投影得到候选人脸窗口集合。对比实验表明,在640×480以及1 280×720视频帧中,该算法具有较高的子窗口置入率和稳定的检测精度,平均检测速度分别为28 f/s和6 f/s,适用于实时人脸检测。 With the main trend of high-revolution remoter in video capture,the fundamental issue of AdaBoost algorithmis the amount of detection windows placed in the cascade classifiers.The hierarchical duplex AdaBoost algorithm isproposed to accelerate the detection speed.Based on the global target motion and local face feature,it extracts the targetmotion ranges from the relativity based on the patch,gets the sub-space of feature combining with Principal ComponentAnalysis(PCA)based on the motion features,obtains the set of candidate windows by the sub-space projection.Comparedwith experiment results,on the video frame of640×480and1280×720,the hierarchical duplex AdaBoost algorithm hashigher sub-window placement rate and stable detection speed,and the average detection speed is28f/s and6f/s respectively.So it is adapted to the real-time detection.
作者 罗富丽 李佳田 LUO Fuli;LI Jiatian(Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第7期154-159,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.41561082 No.41161061 No.40901197)
关键词 人脸检测 ADABOOST算法 运动特征 光流 主成分分析 face detection AdaBoost algorithm moving feature optical flow Principal Component Analysis(PCA)
  • 相关文献

参考文献2

二级参考文献17

  • 1YANG M H, KRIEGMAN D, AHUJA N. Detecting faces in images: A survey [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24( 1 ) :34-58.
  • 2SANIA A, INALOU, SHOHREH K. AdaBoost based face detection in color images with low false alarm [ C ]. Second International Conference on Computer Modeling and Simulation, 2010, 2 : 107-111.
  • 3YANG G Z, HUANG T S. Human face detection in a complex background[J]. Pattern Recognition, 1994, 27 ( 1 ) :53-63.
  • 4WANG, J Z, YANG H M. Face detection based on tem- plate matching and 2DPCA algorithm [ C ]. Congress on Image and Signal Processing, 2008, 4:575-579.
  • 5LIU X N, GENG G H. Automatically face detection based on BP neural network and Bayesian decision[ J]. Natural Computation (ICNC), 2010, 3 : 1590-1594.
  • 6SHAVERS C, LI R, LEBBY G. An SVM-based approach to face detection[ C]. System Theory, 2006: 362-366.
  • 7ROBERT E, SCHAPIRE, YORAM S. Improved boosting algorithms using confidence rated predictions [ J ]. Ma- chine Learning, 1999, 37 (3) :297-336.
  • 8LI G, XU Y P, WANG JY. An improved AdaBoost face detection algorithm based on optimizing skin color model [ C]. International Conference on Natural Computation, 2010, 4:2013-2015.
  • 9VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition ( CVPR), 2001, 1 : 511-518.
  • 10LIENHART R, JOCHEN M. An extended set of haar- like features for rapid object detection [ J ]. IEEE ICIP, 2002, 1:900-903.

共引文献49

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部