期刊文献+

Flow behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models 被引量:16

Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr合金基于Arrhenius模型与ANN模型的热压缩流变行为(英文)
下载PDF
导出
摘要 The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate range between0.01and20s?1.The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature.Basedon the experimental results,Arrhenius constitutive equations and artificial neural network(ANN)model were established toinvestigate the flow behavior of the alloy.The calculated results show that the influence of strain on material constants can berepresented by a6th-order polynomial function.The ANN model with16neurons in hidden layer possesses perfect performanceprediction of the flow stress.The predictabilities of the two established models are different.The errors of results calculated by ANNmodel were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are3.49%and1.03%,respectively.In predicting the flow stress of experimental aluminum alloy,the ANN model has a betterpredictability and greater efficiency than Arrhenius constitutive equations. 在Gleeble-3500热模拟仪上进行热压缩实验,研究在变形温度为623~773 K、应变速率为0.01~20 s^(-1)时均匀化状态下Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr合金的热变形行为。实验结果表明:变形过程中流变应力值随应变速率的减小或变形温度的升高而减小。为研究热压缩过程合金的流变行为,同时建立了应变补偿本构模型与人工神经网络模型。计算结果表明:热压缩过程中各个材料常数与应变之间的关系可分别用6次多项式描述;隐含层含有16个神经元的神经网络模型具有好的预测效果。采用应变补偿本构模型和神经网络模型对流变应力进行预测,预测值平均绝对误差分别为3.49%和1.03%,神经网络模型预测精度与效率均高于应变补偿本构模型。
作者 Jie YAN Qing-lin PAN An-de LI Wen-bo SONG 严杰;潘清林;李安德;宋文博(中南大学材料科学与工程学院,长沙410083;晟通科技集团有限公司,长沙410200)
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期638-647,共10页 中国有色金属学报(英文版)
基金 Project(2016GK1004) supported by the Science and Technology Major Project of Hunan Province,China
关键词 aluminum alloy hot compressive deformation flow stress constitutive equation artificial neural network model 铝合金 热压缩变形 流变应力 本构方程 人工神经网络模型
  • 相关文献

同被引文献174

引证文献16

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部