摘要
The influence of implantation of N+ions of different energies on the nanostructure of7049Al substrates and the corrosioninhibition of produced Al samples in a3.5%NaCl solution was studied.The X-ray diffraction(XRD)results confirmed the formationof AlN as a result of N+ion implantation.The atomic force microscope(AFM)results showed that grains of larger scale are formedby increasing N+energy which can be due to heat accumulation in the sample during implantation causing higher rate of diffusion inthe sample,hence decreasing the number of defects.Corrosion resistance of the samples was studied by the electrochemicalimpedance spectroscopy(EIS)measurements.Results showed that corrosion resistance of implanted Al increases with increasing N+ion energy.The equivalent circuits for the N+implanted Al samples with different energies were obtained,using the EIS data whichshowed strong dependence of the equivalent circuit elements on the surface morphology of the samples.Finally,the relationshipbetween corrosion inhibition and equivalent circuit elements was investigated.
研究了不同能量氮离子注入对7049铝合金基体纳米结构的影响及其在3.5%NaCl溶液中的腐蚀抑制作用。XRD结果表明,氮离子注入可导致氮化铝的形成。原子力显微镜(AFM)结果表明,随着氮离子能量的增大,晶粒增大,这是因为注入过程中样品的储热产生了较高的扩散速率,从而减少缺陷。采用电化学交流阻抗谱(EIS)研究了样品的耐腐蚀性,结果表明随着氮离子能量的增大,注入氮离子的铝样品的耐腐蚀性随之增大。根据EIS数据得到了注入氮离子的铝样品的等效电路,该等效电路元件强烈依赖样品形貌。最后,研究了腐蚀抑制和等效电路元件的关系。
作者
FatemeABDI
HadiSAVALONI
Fateme ABDI;Hadi SAVALONI(Department of Physics, University of Tehran, North-Kargar Street, P. O. Box 143951547, Tehran 1439955961, Iran)
基金
University of Tehran and the Iran National Science Foundation(INSF)
center of excellence for structural and microscopic properties of matter,Department of Physics,University of Tehran for partial support of this work