期刊文献+

类不平衡模糊加权极限学习机算法研究 被引量:7

Research on Class Imbalance Fuzzy Weighted Extreme Learning Machine Algorithm
下载PDF
导出
摘要 从理论上分析了样例不平衡分布对极限学习机性能产生危害的原因;在该理论框架下探讨了加权极限学习机在处理此类问题上的有效性及其固有缺陷;引入模糊集的思想,对传统的加权极限学习机进行了改进,并提出了4种用于解决类不平衡问题的模糊加权极限学习机算法;最后通过20个基准的二类不平衡数据集对所提算法的有效性和可行性进行了验证。实验结果表明:较之加权极限学习机及几种传统的不平衡极限学习机算法,提出的算法可明显获得更优的分类性能,并且与模糊加权支持向量机系列算法相比,所提算法通常可获得与之相当的分类性能,但时间开销往往更小。 Firstly,this paper analyzes the reason that the performance of extreme learning machine(ELM)is destroyedby imbalanced instance distribution in theory.Then,based on the same theoretical framework,this paper discussesthe effectiveness and inherent shortcomings of the weighted extreme learning machine(WELM).Nextly,profiting from the idea of fuzzy set,this paper proposes four fuzzy weighted extreme learning machine(FWELM)algorithms to deal with class imbalance problem.Finally,this paper verifies the effectiveness and feasibility of thesefour FWELM algorithms by the experiments constructing on20baseline binary-class imbalanced data sets.The experimentalresults indicate that the proposed algorithms can often acquire better classification performance than WELMalgorithm and several traditional class imbalance learning algorithms in the context of ELM.In addition,in contrast FSVMwithfuzzy support vector machine for class imbalance learning(FSVM-CIL)series algorithms,the proposed algorithmscan produce the comparable classification performance,but always consume less training time.
作者 于化龙 祁云嵩 杨习贝 左欣 YU Hualong;QI Yunsong;YANG Xibei;ZUO Xin(School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China;College of Automation, Southeast University, Nanjing 210096, China)
出处 《计算机科学与探索》 CSCD 北大核心 2017年第4期619-632,共14页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61305058 61471182 61572242 江苏省自然科学基金Nos.BK20130471 BK20150470 中国博士后科学基金Nos.2013M540404 2015T80481 江苏省博士后基金No.1401037B~~
关键词 极限学习机 类不平衡学习 模糊加权 先验分布信息 extreme learning machine class imbalance learning fuzzy weighting prior distribution information
  • 相关文献

参考文献2

二级参考文献15

  • 1Veropoulos K., Campbell C. and Crisfianini N. Controlling the Sensitivity of Support Vector Machines[A]. Proceedings of the 16^th International Joint Conference on Artificial Intelligence (IJCAI 1999) [C]. Stockholm, Sweden: IJCAI Press, 1999:55 - 60.
  • 2R. Akbani, S. Kwek and N. Japkowicz. Applying Support Vector Machines to Imbalanced Datasets [ A ]. Proceedings of the 15th European Conference on Machine Learning (ECML 2004) [ C]. Italy: Springer Press, 2004.39 - 50.
  • 3Yuan J., Li J., and Zhang B. Learning Concepts from Large Scale Imbalanced Data Sets using Support Ouster Machines [ A].Proceedings of the 14th annul ACM International Conference on Multimedia[ C ]. Santa Barbara: ACM Press, 2006. 441 - 450.
  • 4P. Kang and S. Cho. EUS SVMs: Ensemble of Under - Sampied SVMs for Data Imbalance Problems [A]. Proceedings of the 13^th International Conference on Neural Information Processing (ICONIP 2006) [C]. Hong Kong: Springer Press, 2006: 837 - 846.
  • 5T Imam, K M Ting, J Kamruzzaman. z - SVM: An SVM for Improved Classification of Imbalanced Data [ A ]. Proceedings of the 19th Australian Joint Conference on Artifical Intelligence (AJCAI 2006) [ C]. Hobart, Australia: Springer Press, 2006. 264 - 273.
  • 6Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W. P. Smote: Synthetic Minority Over-sampling Technique[ J]. Journal of Artificial Intelligence Research. (JAIR) ,2002,16:321 - 357.
  • 7Y. Liu,A.An,X.Huang. Boosting prediction accuracy on irn- balanced datasets with SVM ensembles[ A]. Proceedings of the 10th Pacific- Asia Conference on Knowledge Discovery and Data Mining ( PAKDD 2006) [ C ]. Singapore: Springer Press, 2006:107 - 118.
  • 8J T Kwok, I W Tsang. The Pre-image Problem in Kernel Methods [J]. IEEE. Transactions on Neural Networks,2004, 15(6) : 1517- 1525.
  • 9J C Crower. Adding a Point to Vector Diagrams In Multivariate Analysis [ J]. Biometrika, 1968,55 (3) : 582 - 585.
  • 10李鹏,王晓龙,刘远超,王宝勋.一种基于混合策略的失衡数据集分类方法[J].电子学报,2007,35(11):2161-2165. 被引量:16

共引文献88

同被引文献56

引证文献7

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部