期刊文献+

ICS优化SVM在模拟电路故障诊断中的应用 被引量:2

Application of SVM Optimized ICS in Fault Diagnosis of Analog Circuit
下载PDF
导出
摘要 针对容差模拟电路软故障,为了提高诊断的准确率,提出了一种基于改进布谷鸟算法优化支持向量机的故障诊断模型。首先,利用Hear小波分析对模拟电路进行故障特征提取;然后将提取的故障特征输入支持向量机进行故障诊断,同时为了使模型更稳定,利用改进布谷鸟算法选择最优惩罚参数和核函数参数以优化SVM。最后,以Sallen-key带通滤波器电路为例进行仿真实验,通过与神经网络、传统SVM分类模型进行对比,结果表明了该方法的优越性和可行性。 For the soft fault of analog circuit,a fault diagnosis model with improved cuckoo searchalgorithm(ICS)optimizing support vector machine(SVM)was proposed to improve the accuracy.First,Hear wavelet analysis was used to extract fault features as pretreatment from the signal of analog circuit.Then,the features were input to SVM to diagnose fault.And at the same time,ICS optimized parametersof SVM to improve the diagnosis accuracy.Finally,compared to neural network and SVM,Sallen-keyband-pass filter was taken as an example to prove the validity and feasibility of the proposed method.
作者 蔡鑫 南新元 高丙朋 Cai Xin;Nan Xinyuan;Gao Binpeng(School of Electrical Engineering,Xinjiang University,Urumqi 80047,China)
出处 《科技通报》 北大核心 2017年第4期79-82,151,共5页 Bulletin of Science and Technology
关键词 改进布谷鸟算法 支持向量机 模拟电路 故障诊断 improved cuckoo search algorithm SVM analog circuit fault diagnosis
  • 相关文献

参考文献3

二级参考文献57

  • 1Wang Y R, Zhang Z Q, Cui J. The architecture and circuital implementation scheme of a new cell neural network for analogsignal processing [J]. Journal of Universal Computer Science, 2007, 13(9): 1344-1353.
  • 2Luo H, Wang Y R, Cui J. A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT aspreprocessor [J]. Expert Systems with Applications, 2011, 38(3) :10554-10561.
  • 3Aminian M, Aminian F. A modular fault-diagnostic system for analog electronic circuits using neural networks withwavelet transform as a preprocessor [J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (5) :1546- 1554.
  • 4Seyyed M S J, Mohammadi K. Evolutionary derivation of optimal test sets for neural network based analog and mixedsignal circuits fault diagnosis approach [J]. Microelectronics Reliability, 2009, 49(2): 199-208.
  • 5Cui J, Wang Y R. A novel approach of analog circuit fault diagnosis using support vector machines classifier [J]. Measurement, 2011, 44(1): 281-289.
  • 6Lin C F, Wang S D. Fuzzy support vector machines [J]. IEEE Transactions on neural networks, 2002, 13 (2) : 464- 471.
  • 7Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9 (3) : 293-300.
  • 8Dietterich T G, Bakiri G. Solving multiclass learning problems via error-correcting output codes [J]. Journal of Artificial Intelligence Research, 1994, 2(1): 263-286.
  • 9Allwein E L, Schapire R E, Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers [J]. Journal of Machine Learning Research, 2001, 1:113-141.
  • 10Escalera S, Pujol O, Radeva P. On the decoding process in ternary error-correcting output codes [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2010, 32 (1) : 120-134.

共引文献32

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部