期刊文献+

基于磁轭结构的脉冲涡流热成像激励效果比较

Comparative study of pulsed eddy current thermography excitation effect based on magnet yoke structure
下载PDF
导出
摘要 针对目前脉冲涡流感应热成像无损检测中激励线圈加热不均匀、受提离影响大的问题,将导线缠绕在磁轭装置上加载电流,分析其激励效果。为确定线圈缠绕位置对激励效果的影响,比较了不同装置激励时裂纹两端和底部的涡流分布及温度分布。结果表明,引入磁轭装置后系统的能量传递效率得到很大提高,同时激励的不均匀性减弱。激励线圈均匀分布在磁轭装置横梁及两极靴时激励效果最好。利用最优激励模型对不同方向的裂纹进行检测,结果表明,铁磁材料表面各个方向角的裂纹都可以被检测到,非铁磁材料方向角较小的裂纹不能被检测到。根据试件表面最高温度随裂纹方向角增大而线性增加的特点可以识别裂纹的方向角。 For uneven heating and great influence of lift-off of excitation coil in pulsed eddy current thermography,we wounded the coil on a magnet yoke structure to applied excitation and analyzed the excitation effect.In order to test he impact of the position of the wound coil,we compared the distribution of eddy current and temperature on the ends and ottom of the crack under different excitation means.It showed that,after the introduction of the magnet yoke structure,he energy transfer efficiency of the system is greatly improved and unevenness of excitation is weakened.The best effect btained when the coil uniformly distributed on beam and pole pieces.Using the optimal model to detect cracks in ifferent directions,the results showed that,cracks with any angle on ferromagnetic material can be detected while small ngle fractures on non-ferromagnetic can't be discovered.It is possible to identify the direction of the crack because the aximum temperature of the specimen surface is linearly increased with the increase of crack angle.
作者 邢晓军 左宪章 褚丽娜 张云 XING Xiao-jun;ZUO Xian-zhang;CHU Li-na;ZHANG Yun(Department of Unmanned Aerial Vehicle, Ordnance Engineering College, Shijiazhuang 050003, China)
出处 《磁性材料及器件》 CAS 2017年第2期35-40,共6页 Journal of Magnetic Materials and Devices
关键词 脉冲涡流热成像 裂纹检测 磁轭装置 能量传递效率 温度分布 pulsed eddy current thermography defect detection magnet yoke structure energy transfer efficiency distribution of temperature
  • 相关文献

参考文献2

二级参考文献24

  • 1Clauzon T, Thollon F, Nicolas A. Flaws characteriza- tion with pulsed eddy current NDT[J]. IEEE Trans- actions on Magnetics, 1999,35(3) :1873-1876.
  • 2Lebrun B, Jayet Y, Baboux J C. Pulsed eddy current signal analysis: application to the experimental detec- tion and characterization of deep flaws in highly con- ductive materials[J]. NDT&E International, 1997, 30 (3):163-170.
  • 3Dutta S, Ghorbel F, Stanley R. Dipole modeling of magnetic flux leakage[J]. IEEE Transactions on Mag- netics, 2009,45 (4) : 1959- 1965.
  • 4Ding Jinfeng, Kang Yihua, Wu Xinjun. Tubing thread inspection by magnetic flux leakage[J]. NDT&E In- ternational, 2006,39 (1) : 53- 60.
  • 5Sophian Ali, Tian Gui Yun, Zairi Sofiane. Pulsed magnetic flux leakage techniques for clack detection and characterization[J]. Sensors and Actuators, 2006, 125(2) : 186- 191.
  • 6Wilson John, Tian Gui Yun. Pulsed electromagnetic methods for defect detection and characterisation[J]. NDT&E International, 2007,40 (4) : 275- 283.
  • 7Park Gwan Soo, Park Eun Sik. Improvement of the sensor system in magnetic flux leakage-type nonde- structive testing[J]. IEEE Transactions on Magnet- ics, 2002, 38(2):1277-1281.
  • 8Li Yong, Wilson John, Tian Gui Yun. Experiment and simulation study of 3D magnetic field sensing for magnetic flux leakage defect charaeterisation [J]. NDT&E International, 2007,40 (2) : 179- 184.
  • 9Jomdecha C, Prateepsen A. Design of modified elec- tromagnetic main--flux for steel wire pipe inspection [J]. NDT&E International, 2009,42 (1) : 77- 83.
  • 10Zimmerman W B J. Multiphysics Modelling with Fi- nite Element Method[M]. USA: World Scientific Publishing Co, 2006.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部