期刊文献+

基于主题契合度的专家推荐模型研究 被引量:7

A Topic Relevance Aware Model for Reviewer Recommendation
下载PDF
导出
摘要 评审专家遴选是会议、期刊等投稿论文评审的一项重要步骤。本研究首先依据主题在学科中出现频率,分析待评审论文及候选专家论文的主题重要性;其次,综合考虑主题重要性,构造整数优化模型以高效地为多篇待审文稿推荐评审专家,并加入专家专长与投稿论文的匹配度、评审专家权威性、评审专家工作量分配等因素以满足专家推荐的现实需求;最后,从平均覆盖率、人均审核率和重要性匹配度三个角度对本模型的有效性进行验证。结果表明,提出的优化模型可以较好地完成专家推荐任务。 Reviewer assignment is an important step in the phase of paper evaluation for conference organizers and journal editors.In this study,the importanceof a topic is initially estimated by its occurrence frequency within a specific research area,which helps to express submissions and reviewers’expertise.Next,inconsideration of topic importance in submissions,an integer optimization model is formulated to recommend a reviewer group.Also,different practical constraintsare reckoned in the optimization model,which includes the affinity between reviewers and submissions,reviewers’expertise,the burden assignment of each reviewer,etc.To evaluate the effectiveness,the proposed approach is benchmarked with two baseline algorithms in terms of coverage,average number of reviewers,relevancebetween reviewers and topics,etc.Comparative experiment results show that the proposed approach is capable to recommend reviewers effectively.
作者 靳健 杨海慈 李凝 耿骞 JIN Jian;YANG HaiCi;LI Ning;GENG Qian(School of Government, Beijing Normal University, Beijing 100875, China;School of Foreign Studies, Central University of Finance and Economics, Beijing 100081, China)
出处 《数字图书馆论坛》 CSSCI 2017年第4期47-55,共9页 Digital Library Forum
基金 教育部人文社会科学研究青年基金项目"面向论文评审专家推荐的兴趣变化挖掘与回避机制生成的研究"(编号:16YJC870006) ISTIC-EBSCO文献大数据发现服务联合实验室基金项目"融合异构科研数据的评审专家推荐研究"资助
关键词 评审专家推荐 主题契合度 整数优化 Reviewer Assignment Topic Relevance Integer Optimization
  • 相关文献

参考文献4

二级参考文献47

  • 1周荣庭,郑彬.分众分类:网络时代的新型信息分类法[J].现代图书情报技术,2006(3):72-75. 被引量:57
  • 2潘星,王君,刘鲁.一种基于概念聚类的知识地图模型[J].系统工程理论与实践,2007,27(2):126-132. 被引量:22
  • 3NEWMAN M E J, GIRVAN M. Finding and Eval- uating Community Structure in Networks[J]. Phys- ical Review E, 2004, 69(2): 026113.
  • 4BREESE J S, KADIE C. Empirical Analysis of Pre- dictive Algorithms for Collaborative Filtering[C]// Proceeding of the Conference on Uncertainty in Arti- ficial Intelligence, Wisconsin, 1998.
  • 5HERTZUM M, PEJTERSEN A M. The Informa tion-seeking Practises of Engineers: Searching for Documents as Well as for People[J]. The Process Manage,2000,36(5) :761-778.
  • 6YIMAM-SEID D, KOBSA A. Expert Finding Sys tems for Organizations: Problem and Domain Analy sis and the DEMOIR Approach[J]. Journal Organi zat Comput and E-Commerce,2003, 13(1):1-24.
  • 7REICHLING T, SCHUBERT K, WULF V. Matc- hing Human Actors Based on Their Texts.. Design and Evaluation of an Instance of the Expert Finding Framework [ C ]//Proceedings of GROUP, New York, 2005.
  • 8CRASWELL N, HAWKING D, VERCOUSTRE A M, et al. Panoptic Expert: Searching for Experts Not Just for Documents [C]//Ausweb Poster Proceed- ings, Queensland, 2001.
  • 9BALOG K, AZZOPARDI L, DE RIJKE M. Formal Models for Expert Finding in Enterprise Corpora[C]//Proceedings of SIGIR, New York, 2006.
  • 10FANG H, ZHAI C. Probabilistic Models for Expert Finding[C]//ECIR'07 Proceedings of the 29th Euro- pean Conference, Roma : ECIR, 2007.

共引文献35

同被引文献88

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部