期刊文献+

边框阴影对BIPV/T系统光电光热综合性能的影响

Border Shadow Distribution of BIPV/T System and Its Influence on Comprehensive Photovoltaic/Thermal Performance
下载PDF
导出
摘要 太阳能光电/光热建筑一体化(BIPV/T)综合利用系统中的空气隔热层可以提高系统光热效率,但支撑边框会在板芯上形成阴影,该阴影会影响BIPV/T的综合性能。本文建立了二维的辐照场模型、传热模型和电学模型,探索边框阴影分布规律及其对BIPV/T光电光热性能的影响。研究结果表明:以北京地区为例,系统的边框阴影显著且全年呈规律性分布;全年来看,边框阴影对系统的光热性能影响较小,日平均光热效率增/损的最大值为0.49%;阴影对系统的光电性能影响显著,日平均光电效率损失的最大值为13.19%;由阴影引起的月平均发电量损失介于0.1%~13.2%之间。 The air insulation layer in the building integrated photovoltaic/thermal(BIPV/T)system can improve thephotothermal efficiency.But the support frame will form a shadow on the board core,and the shadow will affect the overallperformance of BIPV/T.In this paper,two-dimensional radiation field model,heat transfer model and electrical model areestablished.The shadow distribution and the effect on the photovoltaic/thermal performance of BIPV/T are explored.Results indicate:taking the Beijing area as an example,the border shadow of the system are obvious and distributedregularly throughout the year.For the whole year,the shadow has little effect on the photothermal performance of thesystem,and the maximum daily increase/loss of photothermal efficiency is0.49%.The effect of shadow on thephotovoltaic performance of the system is significant,and the maximum loss of the average photovoltaic efficiency is13.19%.The monthly average power loss due to shadows ranged from0.1%to13.2%.
作者 李军飞 汪云云 裴刚 LI Jun-fei;WANG Yun-yun;PEI Gang(Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China;Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China)
出处 《新能源进展》 2017年第2期81-90,共10页 Advances in New and Renewable Energy
基金 国家自然科学基金项目(51476159) 东莞创新科研团队项目(2014607101008) 国家科技支撑计划(2015BAD19B02) 安徽省国际科技合作计划(BJ2090130038)
关键词 BIPV/T 阴影 辐照分布 光电转换 光热转换 BIPV/T shadow irrational distribution photovoltaic conversion photothermal conversion
  • 相关文献

参考文献3

二级参考文献24

  • 1弗兰克P英克鲁佩勒 戴维P戴维特 葛新石 王义方 郭宽良.传热的基本原理[M].安徽教育出版社,1985..
  • 2He Wei.Study of photo-thermal and photovoltaic application of solar energy on architecture[D].University of Science and Technology of China,2002.
  • 3Ji Jie,He Wei,Lam H N.The annual analysis of the power output and heat gain of a PV-Wall with different orientations in HongKong[J].Solar Energy Materials & Solar Cell,2002,71:435-448.
  • 4Brinkworth B J,Cross B M,Marshal R H,et al.Thermal regulation of photovoltaic cladding[J].Solar Energy,1997,(61):169-178.
  • 5Ji Jie,Chow Tin-Tai,He Wei.Dynamic performance of hybrid photovoltaic/thermal collector wall in HongKong[J].Building and Environment,2003,38(11):1327-1334.
  • 6Trpanagnostopoulos Y,et al.Hybrid photovoltaic/thermal solar systems[J].Solar Energy,2002,72(3):217-234.
  • 7Chow T T.Performance analysis of photovoltaic-thermal collector by explicit dynamic model[J].Solar Energy,2003,(75):143-152.
  • 8Garg H P,et al.Experimental and theoretical studies on a photovoltaic/thermal hybrid solar collector water heater[A].Proc of ISES 1989 Solar World Congress[C],1989,1:701-705.
  • 9Hayakashi B,et al.Research and development of photovoltaic/thermal hybrid solar power generation system[A].Proc of ISES 1989 Solar World Congress[C],1989,1:302-306.
  • 10Bergene T,Lovik O.Model calculations on a flat-plate solar heat collector with integrated solar cells[J].Solar Energy,1995,55(6):453-462.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部