期刊文献+

基于视觉的缩微车车道线检测 被引量:1

Detection of Lane Lines for Vision-based Micro-vehicles
下载PDF
导出
摘要 针对缩微车车道线检测算法鲁棒性和实时性差的问题,利用一种数学形态学与最小二乘法相结合进行缩微车车道线检测.首先对采集的道路图像进行预处理,用数学形态学滤波算法去除室内光线变化对车道线图像的影响,运用大津算法和Canny算子分别对去除光照后图像进行分割及分割后图像的边缘检测,最后采用霍夫变换和最小二乘法相结合的方法检测缩微车车道线.在室内强光照等复杂环境下,能准确快速检测出缩微车车道线,解决了传统缩微车车道线检测算法鲁棒性和实时性差的问题. Due to the problem that the micro car lane mark detection algorithms are poor in robust adaptation and real-time performance,an improved method combined mathematical morphology and least squares method is used to realize the micro car lane mark detection.Firstly,road images are preprocessed,and the influence of indoor lighting changes to lane images is removed by the improved morphological filtering algorithm.And then,the images are dividing by OTSU threshold dividing algorithm,and after dividing,Canny edge detection operators are used to realize edge extraction.Finally,the cumulative probability of the Hough transform combined with least squares method is used to realize the micro car lane mark detection.The experiments show that the proposed algorithm can detect the micro car lane mark in strong light or lack of light and other complex lighting conditions quickly and accurately,which solves the problem that the tradition micro car lane mark detection algorithms are poor in robust adaptation and real-time performance.
作者 朱亚萍 李永强 ZHU Yaping;LI Yongqiang(Institute of Intelligent Control and Robot,Hangzhou Dianzi University,Hangzhou Zhejiang 310018, China)
出处 《杭州电子科技大学学报(自然科学版)》 2017年第1期57-61,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61427808)
关键词 数学形态学 阈值分割 最小二乘法 mathematical morphology threshold segmentation least square method
  • 相关文献

参考文献6

二级参考文献68

  • 1余天洪,王荣本,郭烈,顾柏园.不同光照条件下直线型车道标识识别方法研究[J].汽车工程,2005,27(5):510-513. 被引量:8
  • 2郭江,丰义,朱程辉.基于特征颜色的车牌边缘检测方法[J].新疆大学学报(自然科学版),2007,24(2):248-252. 被引量:2
  • 3金辉,吴乐林,陈慧岩,龚建伟.结构化道路车道线识别的一种改进算法[J].北京理工大学学报,2007,27(6):501-505. 被引量:28
  • 4Wang J G, Lin C J, Chen S M. Applying fuzzy method to vision-based lane detection and departure warning system [J]. Expert Systems with Applieations(S0957-4174), 2010, 37(1): 113-126.
  • 5Lopez A, Serrat J, Canero C, et al. Robust lane markings detection and road geometry computation [J]. International Journal of Automotive Technology(S1229-9138), 2010, 11(3): 395-407.
  • 6Jung C R, Kelber C R. Lane following and lane departure using a linear-parabolic model [J]. Image and Vision Computing (S0262-8856), 2005, 23(13): 1192-1202.
  • 7Kuo - Yu Chiu and Sheng - Fuu Lint. Lane Detection using Color - Based segmentation[ C]. IEEE, 2005. 706 -711.
  • 8Soumya Dutta, Bidyut B Chaudhuri. A Color Edge Detection Algo- rithm in RGB Color Space[ C]. 2009 International Conference on Advances in Recent Technologies in Communication and Compu- ting, 2009 : 337 - 340.
  • 9Gray Bradski,Adrian Kaebler. Leafing OpenCV[ M ].北京:清华大学出版社,2009.
  • 10BATAVIA P H,PONERI.EAU D A,THORPE C E Predicting I.ane Position for Roadway Departure Pre vention[C]//IEEE. Intelligent Vehicles Symposium Stuttgart : IEEE, 1998 : 28-30.

共引文献98

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部