期刊文献+

基于重取样的鲁棒投资组合优化的加速解法

Acceleration solving method for robust portfolio optimization based on resampling
下载PDF
导出
摘要 针对基于重取样的鲁棒投资组合优化模型,为有效解决重取样和混合整数规划模型计算量太大的问题,提出一种高效的加速求解方法。利用带初始解和不带初始解的双线程来求解问题,始终选取计算快的线程,加速整个求解过程,初始解的寻找依赖已经求解的模型结果和模型的鲁棒性特征。数值实验选取模拟数据对该加速方法及其性能进行分析,实验结果表明,在几乎不影响最优值的情况下,该方法使计算效率得到较大提高。 To accelerate the solving process of the robust portfolio optimization model based on resampling,an efficient method was presented.The process was accelerated by choosing the faster thread from two threads,in which one started with a primal solution and the other did not.The fact that the primal feasible solution depended on the results of the solved models and the ro-bustness of the model was found.This experiment made analysis of the performance of the proposed method with simulation da-ta.Experimental results show that this method can save considerable calculating time when the optimal value is achieved.
作者 吴剑彬 王珏 胡永宏 陆忠华 WU Jian-bin;WANG Jue;HU Yong-hong;LU Zhong-hua(Super-Computing Center, Computer Network Information Center, Chinese Academy of Sciences? Beijing 100190, China;School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China;University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《计算机工程与设计》 北大核心 2017年第2期384-388,399,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61272193) 国家863高技术研究发展计划基金项目(2015AA01A303) 中国科学院青年创新促进会基金项目(2015375) 中国科学院信息化专项“面向云服务的超级计算环境建设与应用”基金项目(XXH2503-02).
关键词 加速方法 鲁棒优化 重取样 混合整数规划模型 初始可行解 acceleration method robust optimization resampling mixed integer programming model primal feasible solution
  • 相关文献

参考文献3

二级参考文献77

  • 1高莹,黄小原.具有VaR约束的跟踪误差投资组合鲁棒优化模型[J].中国管理科学,2007,15(1):1-5. 被引量:11
  • 2Artzner P., Delbaen F., Eber J.M. and Heath D. Coherence measures of risk[J]. Mathematical Finance, 1999, 9: 203-228.
  • 3Alizadeh F and Goldfarb D. Second-order cone programming[J]. Mathematical Programming (Ser. B), 2003, 95: 3-51.
  • 4Black F. and Litterman R. Global portfolio optimization[J]. Financial Analysis Journal, 1992, 48: 28-43.
  • 5Ben-Tal A. and Nemirovski A. Robust optimization methodology and applications[J]. Math- ematical Programming( Ser. B), 2002, 92: 453-480.
  • 6Costa O. and Paiva A. Robust porfolio selection using linear-matrix inequality[J]. Journal of Ecnomic Dynamics Control, 2002, 26: 889-909.
  • 7Goldfarb D. and Iyengar G. Robust portfolio selection problems[J]. Mathematics of Operations Research, 2003, 28: 1-38.
  • 8Ghaoui L. and Oustry F. Worst-case Value-at-Risk and robust portfolio optimization: A conic programming approach[J]. Operations Research, 2003, 51: 543-556.
  • 9Lobo M., Fazel M. and Boyd S. Portfolio optimization with linear and fixed transaction costs[J]. Annals of Operations Research, 2007, 152(1): 376-394.
  • 10Lobo M.S., Vandenberghe L. and Boyd S. Applications of second-order cone programming[J]. Linear Algebra and Its Applications, 1998, 284: 193-228.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部