期刊文献+

基于HOFHOG和RDF的火灾区域探测

Detecting fire region based on random decision forest and HOFHOG features
下载PDF
导出
摘要 为探索基于时空特征的室内外火焰和烟雾的识别,分析在时空块内不同通道下的光流直方图,探索火灾区域的梯度方向直方图的静动态特征描述方法,采用各分量相邻帧差组成时空块间特征的统计数据,反映各特征的空间和时频分布属性,对随机决策森林树训练过程中的参数、性能进行选择和分析,探测火焰与烟雾区域各特征的空间分布和时序关系,由决策森林投票给出更逻辑合理的判断。实验结果表明,该方法在火灾探测系统中表现出稳定的识别精度。 To probe the recognition of flame and smog based on colors and spatial-temporal features in indoor and outdoor illumi-nation,an analysis way for histograms of oriented optical flow in different channels was proposed.How to describe fire region using static and dynamic features of histograms of oriented gradients was researched.A way of adopting block?s frame difference statistic attributes as spatial-temporal fusion feature was presented.Parameter selection and performance analysis for random de-cision forest classifier training based on feature subsets were presented via relief feature selection.Flame and smog region were detected simultaneously and a more logical alarm judgment was submitted by decision tree forest voting according to detected re-gion?s spatial-temporal distribution and relations.Experimental results show that the flame and smog detection system based on random decision forest classifier has more stable and higher accuracy.
作者 蒋先刚 范自柱 张盼盼 JIANG Xian-gang;FAN Zi-zhu;ZHANG Pan-pan(School of Science, East China Jiaotong University, Nanchang 330013,China)
出处 《计算机工程与设计》 北大核心 2017年第2期494-499,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61262031 61263032)
关键词 光流直方图 梯度方向直方图 火突探测 随机森林 决策树 histograms of oriented optical flow histogram of oriented gradient fire detection random forest decision tree
  • 相关文献

参考文献3

二级参考文献98

  • 1张才.2010年全国火灾情况分析[J].安全,2011(2):46-49. 被引量:12
  • 2Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.
  • 3Shahshahani B M and Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5) 1087-1095.
  • 4Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 5Wright J, Ma Y, Mairal J, et al. Sparse representations for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 6Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]. International Conference on Machine Learning, Corvallis, 2007: 759-766.
  • 7Qiao Li-shan, Chen Song-can, and Tan Xiao-yang. Sparsity preserving projection with applications to face recognition [J] Pattern Recognition, 2010, 43(1): 331-341.
  • 8Han Ya-hong, Wu Fei, Zhuang Yue-ting, et al. Multi-label transfer learning with sparse representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(8): 1110-1121.
  • 9Aharon M, Elad M, and Bruckstein A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 10Mairal J, Bach F, Ponce J, ct al.. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部