期刊文献+

基于智能视觉的变电站设备状态智能巡视 被引量:17

Substation equipment state intelligent patrol based on intelligent vision
下载PDF
导出
摘要 为了缩减变电站维修成本,提出基于智能视觉的变电站设备状态智能巡视方法,设计巡视系统。通过分析智能视觉基本结构,构建智能视觉巡视坐标系,给出机器人在变电站中的最优巡视路线,巡视路线的重要参数包括最优距离和机器人巡视角度。介绍了巡视系统中图像智能解析、无线通信、伺服管理、机器人导航和远程遥控五项基本功能,并以此拟定系统巡视方案,设计系统结构。实验结果证明,与市面上广泛应用的巡视系统相比,依据该方法设计的巡视系统的巡视准确程度更高。 In order to reduce the maintenance cost of substation,a substation equipment state intelligent patrol method based on intelligent vision is proposed to design the patrol system.The basic structure of the intelligent vision is analyzed in the method to construct the intelligent vision patrol coordinate system.The optimal patrol route of the robot in substation is given.The important parameters of the patrol route include the optimal patrol distance and robot′s patrol vision.Five fundamental functions of the patrol system are introduced,including the image intelligent analysis,wireless communication,servo management,robot navigation and remote control.On these basis,the system patrol scheme is set,and the system structure is designed.The experimental results show that,in comparison with the widely?used patrol system in the market,the patrol system according to the proposed method has higher patrol accuracy.
作者 沈海平 姚楠 黄薛凌 SHEN Haiping;YAO Nan;HUANG Xueling(Wuxi Power Supply Company,State Grid Jiangsu Electric Power Company,Wuxi 214061,China;Electric Power Research Institute,State Grid Jiangsu Electric Power Company,Nanjing 210000,China)
出处 《现代电子技术》 北大核心 2017年第9期169-172,共4页 Modern Electronics Technique
基金 图像智能感知物联网技术在变电站中的应用研究(J2016056)
关键词 智能视觉 变电站 设备状态 智能巡视 intelligent vision substation equipment state intelligent patrol
  • 相关文献

参考文献9

二级参考文献46

  • 1肖志强,吴文斌,范运珍.智能变电站与常规变电站运行维护的几点关键区别[J].华中电力,2012,25(3):63-66. 被引量:27
  • 2童剑军,邹明福.基于监控视频图像的车辆测速[J].中国图象图形学报(A辑),2005,10(2):192-196. 被引量:37
  • 3任述明,向怀坤,刘建伟,席锋.基于视频图像的车速检测研究[J].交通与计算机,2007,25(1):90-93. 被引量:7
  • 4HE Xiaochen, YUNG N H C. A novel algorithm for estimating vehicle speed from two consecutive images [C]// IEEE Work- shop on Applications of Computer Vision. [S.I.]: IEEE, 2007: 111-120.
  • 5OJANSIVU Ville, HEIKKILA Janne. Blur insensitive texture classification using local phase quantization[M]//Image and Signal Processing, Heidelberg: Springer Berlin Heideberg, 2008 : 236-243.
  • 6OJANSIVU V,RAHTU E, HEIKKILA J. Rotation invariant local phase quantization for blur insensitive texture analy- sis[C]//Pattern Recognition 2008, ICPR 2008, IEEE, 2008 : 1-4.
  • 7RAHTU E, HEIKKILA J,OJANSIVU V,et al. Local phase quantization for blur-insensitive image analysis[J]. Image and Vision Computing,2012,30(8) : 501-512.
  • 8MAK K L,PENG P,YIU K F C. Fabric defect detection using multi-level tuned-matched gabor filters[J]. Journal of Industrial and Management Optimization, 2012,8 (2) : 325-341.
  • 9LI Zheyuan,LIU Hong,XU Chao.Real-time human tracking based on switching linear dynamic system combined with adaptive Mean Shift tracker[C]//Proceedings of 2011 the 18th IEEE International Conference on Image Processing.Brussels:IEEE,2011:329-2332.
  • 10CHEN Ken,FU Songyin,SONG Kangkang,et al.A Mean Shiftbased imbedded computer vision system design for real-time target tracking[C]//Proceedings of 2012 the 7th IEEE International Conference on Computer Science&Education.Melbourne:IEEE,2012:1298-1303.

共引文献25

同被引文献166

引证文献17

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部