期刊文献+

鲁棒性压缩感知重构技术及其在智能视频监控中的应用研究

Robust compressed sensing reconstruction technique and its application in intelligent video monitoring
下载PDF
导出
摘要 在视频监控中需要进行鲁棒性压缩感知重构,降低视频丢包和时延等因素的影响,提出一种基于隐马尔科夫模型的鲁棒性压缩感知重构技术并应用在智能视频监控中。首先利用隐马尔科夫模型对智能视频监控系统中的视频帧序列进行频域特征点奇偶分裂处理;然后计算视频监控编码的标量量化码率分配系数,建立视频压缩感知重构的时空方向树,采用隐马尔科夫模型进行解码重建,实现视频帧的鲁棒性压缩感知重构;最后进行仿真测试。结果表明,采用该方法进行监控视频的压缩感知重构,能有效降低丢包率和传输时延,在智能视频监控中具有较好的应用价值。 As the robustness compressed sensing reconstruction is required in the video monitoring to reduce the effect ofvideo packet loss,time delay and other factors,a robustness compressed sensing reconstruction technology based on hidden Mar?kov model is proposed,which is applied to the intelligent video monitoring.The hidden Markov model is used to deal with odd?even splitting processing of feature points in frequency domain for sequence of video frames in intelligent video surveillance sys?tem,and then the scalar quantization code rate allocation coefficient of the video monitoring encoding is calculated to establish atime?space direction tree for video compressed sensing reconstruction,conduct decoding reconstruction with hidden Markov model,and achieve the robustness compressed sensing reconstruction for video frames.The simulation test results show that the pro?posed method can effectively reduce the packet loss rate and transmission time delay,and has a good application value in intelli?gent video surveillance.
作者 郑志刚 杨真真 ZHENG Zhigang;YANG Zhenzhen(Bohai Shipbuilding Vocational College,Xingcheng 125105,China;College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《现代电子技术》 北大核心 2017年第10期16-19,共4页 Modern Electronics Technique
基金 国家自然科学基金项目(61501251)
关键词 鲁棒性压缩感知 智能视频监控 编码 奇偶分裂处理 robustness compressed sensing video monitoring coding odd.even splitting processing
  • 相关文献

参考文献5

二级参考文献45

  • 1姚洪利.用改进的“当前”统计模型对机动目标快速跟踪[J].情报指挥控制系统与仿真技术,2004,26(6):38-43. 被引量:9
  • 2刁联旺,杨静宇.一种改进的机动目标“当前”统计模型的描述[J].兵工学报,2005,26(6):825-828. 被引量:23
  • 3王来雄,黄士坦.一种新的粒子滤波算法[J].武汉大学学报(工学版),2006,39(1):118-120. 被引量:15
  • 4李振兴, 徐洪洲.基于经验模态分解的小波阈值降噪方法研究[J].科技通报,2012,2(9):125-128.
  • 5XIANG Y, NATGUNANATHAN I, PENG D Z,et al. A dual-channel time-spread echo method for audio watermarking [J]. IEEE Trans on Information Forensics and Security, 2012, 7(2) : 383 392.
  • 6CHEN W M, LAI C J, WANG H C, et al. H. 264video watermarking with secret image sharing[J]. IET Image Processing, 2011, 5(4): 349-354.
  • 7HU R, CHEN F, YU H M. Incorporating Watson's perceptual model into patchwork watermarking for digital images [C ]. 17th IEEE International Conference on Image Processing, 2010: 3705-3708.
  • 8SARKAR A, MADHOW U,CHANDRASEKARAN S. Adaptive MPEG-2 video data hiding scheme [ C]. Proceedings of SPIE Security, Steganography, and Watermarking of Multimedia Contents IX, 2007.
  • 9HAN B, HU Y CH, WANG G J, et al. Enhanced sports video shot boundary detection based on middle level fea- tures and a unified model [ J 1. IEEE Transactions on Consumer Electronics, 2007,53 ( 3 ) : 1168-1176.
  • 10CHASANIS V, LIKAS A, GALATSANOS N. Simultane- ous detection of abrupt cuts and dissolves in videos using sup- ort vector machines [ J ]. Pattern Recognition Let- ters, 2009,30( 1 ) :55-65.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部