摘要
为了减小图像编码中的空间融合,需要进行图像压缩编码。针对当前的LBG图像向量量化压缩算法自适应能力不强的问题,提出一种基于改进小波结合LBG向量量化的图像压缩算法。首先采用双正交小波对原始图像进行正交性分解,采用重构滤波器进行图像的降噪重构,然后运用LBG向量量化方法构造图像的矢量码书,采用三级小波尺度分解进行不同码书尺寸下的图像压缩。最后进行仿真测试,结果表明采用该方法进行图像压缩的信噪比及峰值信噪比较高,说明图像压缩的质量较好,且计算复杂度较低。
In order to reduce the space fusion in image encoding,the image compression encoding is needed.Since theadaptive ability of the LBG image vector quantization compression algorithm is not strong,a image compression algorithm basedon the improved wavelet and combining LBG vector quantization is put forward.The biorthogonal wavelet is used to conduct anorthogonal decomposition of the original image.The filter is reconstructed for the denoising reconstruction of image.The LBGvector quantization method is adopted to construct the vector codebook of image.The three-order wavelet scale decomposition iscarried out to execute image compression at different codebook sizes.The simulation test results show that the method has highsignal-to-noise ratio and peak signal-to-noise ratio for image compression,the image compression quality of the method is bet-ter,and its computational complexity is low.
作者
刘宇
刘伟
LIU Yu;LIU Wei(Yanshan University,Qinhuangdao 066004,China;Liren College,Yanshan University,Qinhuangdao 066004,China)
出处
《现代电子技术》
北大核心
2017年第10期99-102,共4页
Modern Electronics Technique
基金
河北省自然科学基金青年科学基金(F2015203270)
秦皇岛市科学技术研究与发展计划(201602A003)
关键词
小波
图像压缩
向量量化
图像降噪
wavelet
image compression
vector quantization
image reduction