期刊文献+

基于扩散的自适应超分辨率重建

Adaptive supper-resolution reconstruction based on diffusion
下载PDF
导出
摘要 从各向异性角度分析了P-M模型、L1范式(TV模型)、L2范式(调和模型)的不足,通过扩散模型建立超分辨率重建的偏微分方程,提出一种非线性各向异性和超分辨率重建组合的模型。该模型在图像平坦区域具有线性各向同性扩散,能够有效消除噪声,在图像边缘区域具有非线性各向异性扩散保留边缘,有效减少了滤波产生的阶梯效应和P-M模型过渡平滑忽略细节的现象。仿真结果表明,该模型能够有效地提高图像重建质量,能在消除噪声的同时保留边缘,具有很好的鲁棒性。 The disadvantages of P-M model,L1norm(TV model)and L2norm(harmonic model)are analyzed in the as-pect of anisotropy.The partial differential equation for super-resolution reconstruction is established with diffusion model.A modelcombining the nonlinear anisotropy and super-resolution reconstruction is proposed.The model has the characteristics of linearisotropic diffusion in the flat area of the image,which can eliminate the noise effectively,and has nonlinear anisotropic diffu-sion preserving edge in the edge area of the image,which can effectively reduce the staircase effect produced by filtering andavoid the phenomenon that the details of P-M model is neglected due to transition smooth.The simulation results show that themodel can improve the image reconstruction quality effectively,eliminate the noise while remaining the edge,and has good ro-bustness.
作者 付龙 吕晓琪 李婷 谷宇 FU Long;Lü Xiaoqi;LI Ting;GU Yu(School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《现代电子技术》 北大核心 2017年第10期107-110,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61179019) 内蒙古自治区自然科学基金(2015MS0604) 内蒙古自治区高等学校科学研究项目资助(NJZY145) 包头市科技创新体系建设项目(2015C2006-14)
关键词 P-M模型 L1范式 各向同性 各向异性 超分辨率重建 P-M model L1 norm isotropy anisotropy super-resolution reconstruction
  • 相关文献

参考文献7

二级参考文献80

  • 1谢美华,王正明,谢华英.图像去噪的偏微分方程模型的最优参数选取[J].遥感技术与应用,2005,20(2):261-265. 被引量:8
  • 2付树军,阮秋琦,李玉,王文洽.基于各向异性扩散方程的超声图像去噪与边缘增强[J].电子学报,2005,33(7):1191-1195. 被引量:22
  • 3张红英,彭启琮,吴亚东.数字破损图像的非线性各向异性扩散修补算法[J].计算机辅助设计与图形学学报,2006,18(10):1541-1546. 被引量:21
  • 4TSAI R Y, HUANG T S. Muhi-frame image restoration and registration [ C]// Advances in Computer Vision and Image Processing. Greenwich, CT: JAI Press, 1984, 1:317-339.
  • 5STARK H, OSKOUI P. High resoluton image recovery from imageplane arrays, using convex projections [ J]. Journal of the Optical Society of America: A, 1989,6(11) : 1715 - 1726.
  • 6IRANI M, PELEG S. Improving resolution by image registration [J]. CVGIP: Graphical Models and Image Processing, 1991, 53 (3) : 231 - 239.
  • 7SCHULTZ R R, STEVENSON R L. A bayesian approach to image expansion for improved definition [ J]. IEEE Transactions on Image Processing, 1994, 3 ( 3 ) : 233 - 242.
  • 8NHAT N, MILANFAR P, GOLUB G. A computationally efficient super-resolution image reconstruction algorithm [ J]. IEEE Transactions on Image Processing, 2001, 10(4) :573 -583.
  • 9ELAD M, FEUER A. Superresolution restoration of an image sequence: Adaptive filtering approach [ J]. IEEE Transactions Image Processing, 1999, 8(3) : 387 - 395.
  • 10BABACAN S D, MOLINA R, KATSAGGELOS A K. Total variation super resolution using a variational approach [ C]//ICIP 2008: 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE Press, 2008:641-644.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部