期刊文献+

基于演化搜索信息的量子行为粒子群优化算法 被引量:6

Improved QPSO algorithm based on search history
下载PDF
导出
摘要 针对量子行为粒子群优化算法可能过早收敛而陷入局部最优的问题,提出了基于演化搜索信息的非重复访问量子行为粒子群优化算法(Non-revisited QPSO,NrQPSO)。该算法将演化搜索信息记录方案和标准QPSO算法结合起来,确保所有更新的粒子位置都是未被重复访问的,并通过变异操作增加粒子的多样性。演化搜索信息记录方案利用二维空间分割树(BSP)将连续搜索空间划分为不同的重叠子区域,并且将子区域作为粒子变异范围,使得相应的变异操作是一种无参数的自适应变异。对比其他传统算法,通过对八个标准测试函数的实验结果表明,NrQPSO算法在处理多峰和单峰测试函数时具有更好的优化性能,收敛精度和收敛速度都得到了提高,证明该算法的有效性。 An improved Non-revisited QPSO algorithm based on search history(NrQPSO)is proposed to help prevent premature convergence and stagnate at local optimal solutions.NrQPSO is an integration of the entire search history scheme and a standard Quantum-behaved Particle Swarm Optimization(QPSO).It guarantees that all updated positions are not revisited before and the diversity of particles is increased by mutation.The search history scheme partitions the continuous search space into overlap sub-regions by using BSP tree.The partitioned sub-region serves as mutation range such that the corresponding mutation is adaptive and parameterless.Compared with other traditional algorithms,the experiment results on eight standard testing functions show that the proposed algorithm is superior regarding the optimization of multimodaland unimodal functions,with enhancement in both convergence speed and precision.Those demonstrate the effectiveness of the algorithm.
作者 赵吉 程成 ZHAO Ji;CHENG Cheng(Research Centre of Environment Science & Engineering, Wuxi, Jiangsu 214063, China;School of IoT Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China;China Ship Scientific Research Center 702, Wuxi, Jiangsu 214122, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第9期41-46,126,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61300149) 江苏省青蓝工程资助项目 无锡环境科学与工程研究中心科研启动项目
关键词 量子行为粒子群优化 演化搜索信息 二维空间分割 非重复访问 quantum-behaved particle swarm optimization search history binary space partitioning non-revisited
  • 相关文献

参考文献4

二级参考文献48

  • 1王丽,王晓凯.一种非线性改变惯性权重的粒子群算法[J].计算机工程与应用,2007,43(4):47-48. 被引量:60
  • 2倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:70
  • 3Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE, 1995: 1942-1948.
  • 4Bergh FVD. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.
  • 5Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. Proc of 2004 Congress on Evolutionary Computation. Piscataway, 2004: 325-331.
  • 6Fang W, Sun J, Ding Y R, et al. A review of quantumbehaved particle swarm optimization[J]. IETE Technical Review, 2010, 27(4): 336-348.
  • 7Clerc M, Kennedy J. The particle swarm: Explosion, stability and convergence in a multidimentional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8Sun J, Xu W B, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]. Proc of IEEE Conf on Cybernetics and Intelligent Systems. Singapore, 2004:111-116.
  • 9Sun J, Xu W B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C]. Proc of the 2005 IEEE Int Conf on Systems, Man and Cybernetics. Hawaii, 2005, 4: 3049-3054.
  • 10Liang J J, Qin A K. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.

共引文献58

同被引文献29

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部