期刊文献+

复杂场景下基于C-SHOT特征的3D物体识别与位姿估计 被引量:16

3D Object Recognition and 6Do F Pose Estimation in Scenes with Occlusions and Clutter Based on C-SHOT 3D Descriptor
下载PDF
导出
摘要 为了准确地同时识别复杂点云中的多个目标,提出一种基于法矢改进点云特征C-SHOT的3D物体识别方法.首先,在估计RGB-D数据的点云法矢时将邻域点距离信息考虑在内,计算带距离权重的协方差矩阵得到更精确的点云法矢;其次根据特征点处法矢与邻域法矢的夹角余弦构造点云形状直方图,同时统计点云纹理直方图并与形状直方图融合成C-SHOT描述符;最后对场景与模板分别提取C-SHOT特征,利用Kd树快速求得对应对,引入3D霍夫投票机制,并结合点云局部坐标系克服噪声遮挡问题完成多目标初识别.基于LM-ICP实现精确定位及位姿估计,画出目标包围盒,采用基准数据库CVLab以及采集实验室真实数据进行实验,结果验证了该方法的有效性与精确性. A3D object detection and recognition method is proposed in this paper.The method achieves pose estimations of multiple object instances in3D scenes with some occlusions and clutter.First,the normal vector of point is estimated by computing the distance between the neighboring points and the feature one within the local spherical support domain.The longer the distance is,the smaller the weight is.Next,we encode the3D descriptor called color signatures of histogram of orientations(C-SHOT)based on improved normal vector.Then we match3D feature correspondences between scenes and models to prove the existence of the objects being sought on3D hough voting space.Finally,we reject wrong feature correspondences and get rough transformation using random sample consensus(RANSAC).Once reliable feature correspondences have been selected,a final transformation matrix based on levenberg marquardt iterative closest point(LM-ICP),can be performed to further refine pose estimations.A thorough experimental evaluations is carried on CVLab3D datasets and real lab3D datasets for object recognition.Experimental results demonstrate the recognition accuracy and robust performance of the proposed method.
作者 张凯霖 张良 Zhang Kailin;Zhang Liang(Key Laboratory of Advanced Signal and Image Processing, Civil Aviation University of China, Tianjin 300300)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第5期846-853,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61179045)
关键词 三维物体识别 位姿估计 点云配准 迭代最近点算法 霍夫变换 3D object recognition pose estimation point cloud registration iterate closed point Hough transform
  • 相关文献

参考文献3

二级参考文献81

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2马利庄 王荣良.计算机辅助几何造型技术及其应用[M].北京:科学出版社,1997..
  • 3Farin G, Hoschek J, Kim M S. Handbook of computer aided geometric design[M]. Amsterdam: North-Holland, 2002: 651-681
  • 4Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
  • 5Chen Y, Medioni G. Object modeling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155
  • 6Potmesil M. Generating models of solid objects by matching 3D surface segments[C]//Proceedings of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, 1983: 1089-1093
  • 7Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images[J]. Computer Vision and Image Understanding, 1995, 61(3): 295-307
  • 8Johnson A, Hebert M. Surface registration by matching oriented points[C]//Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, 1997: 121-128
  • 9Yang M, Lee E. Segmentation of measured data using a parametric quadric surface approximation[J]. Computer-Aided Design, 1999, 31(7): 449-457
  • 10Hoppe H, DeRose T, Duchamp T. Surface reconstruction from unorganized points[J]. Computer Graphics, 1992, 26(2): 71- 78

共引文献128

同被引文献94

引证文献16

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部