期刊文献+

基于小波神经网络的车辆状态识别方法 被引量:2

Vehicle state recognition method based on Wavelet Neural Network
下载PDF
导出
摘要 针对车辆安全辅助系统中对车辆运行状态识别率偏低的问题,采用小波神经网络对车辆运行状态进行识别。为了进一步提高模型的识别准确率以及减少训练时间,对样本进行主成分分析、卡尔曼滤波,最后利用遗传算法优化小波神经网络。通过对优化后的小波神经网络对数据进行训练与测试,测试结果表明在时间窗口1.8s时模型的识别率能达到91%以上,可以满足车辆安全辅助系统对于车辆状态识别的要求。 Aiming at the problem of low recognition rate of vehicle running state in vehicle safety assistant system,wavelet neural network is used to identify the vehicle running state.In order to improve the recognition accuracy and reduce the training time,the samples are normalized,principal component analysis,Kalman filter.Finally,the wavelet neural network is optimized by genetic algorithm.The data are trained and tested by the optimized wavelet neural network,the test results show that the recognition rate can reach above91%when the time window1.8s.It can meet the requirements of vehicle safety assistant system for vehicle state recognition.
作者 崔宇 黄晓梦 Cui Yu;Huang Xiaomeng(School of Automobile, Chang'an University, Shaanxi Xi'an 710064)
出处 《汽车实用技术》 2017年第8期112-114,共3页 Automobile Applied Technology
关键词 车辆运动状态 神经网络 卡尔曼滤波 主成分分析 遗传算法 vehicle status neural network Kalman filter principal component analysis genetic algorithm
  • 相关文献

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部