期刊文献+

一种改进的多天线信号能量检测方案 被引量:1

Improved signal detection method with multiple antennas
下载PDF
导出
摘要 能量检测(ED)方法是最常用的信号检测方法之一,其具有实现复杂度低和不需要信号先验信息的优点。当噪声方差已知时,能量检测算法可以获得较好的检测性能。在大多数情况下,噪声的方差是需要预估的,因此噪声方差估计的不确定性会对能量检测算法性能造成较大的影响。为了减小由噪声方差不确定性造成的影响,提出了一种改进的多天线能量检测方案。方案将多天线采集的信号进行简单组合,从而构建出一种与噪声方差无关的判决统计量。理论公式表明,方案的检测概率和虚警概率是与噪声方差无关的。仿真结果显示,当天线的数量大于3时,方案的检测性能优于传统的能量检测性能。 Energy Detection(ED)is one of the most common method of signal detection,which has the advantage of low complexity and unrequired prior information of signals.When the noise variance is known,the energy detection algorithm can obtain better detection performance.In most cases,the variance of the noise is required to be estimated,so the uncertainty of the noise variance estimation will have a big impact on the performance of the energy detection algorithm.To minimize the effects caused by the uncertainty of noise variance,an improved multi-antenna energy detection scheme is proposed.The program takes a simple combination of the signal with multiple antennas to construct a decision statistic,which is independent of the noise variance.Theoretical formula shows the probability of detection and probability of false alarm in this program is independent of the noise variance.Simulation results show that when the number of the antenna is more than3,the detection performance of the program better than conventional energy detection performance.
作者 黎严 张国平 罗俊 LI Yan;ZHANG Guoping;LUO Jun(Institute of Physical Science and Technology, Central China Normal University, Wuhan 430079, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第10期112-116,共5页 Computer Engineering and Applications
关键词 认知无线电 信号检测 能量检测 多天线 cognitive radio signal detection energy detection multi-antenna
  • 相关文献

参考文献3

二级参考文献35

  • 1潘建国.认知无线电技术的研究和进展[J].电视技术,2007,31(10):7-9. 被引量:8
  • 2Mitola J, Maguire G. Cognitive radio: making software radios more personal[J]. IEEE Personal Communication Magazine, 1999, 6(4): 13-18.
  • 3Haykin S. Cognitive radio: brain-empowered wireless communi cations[J]. IEEE Journal on Selected Areas in Communica- tions, 2005, 23(2): 201-220.
  • 4Zhang J, Zhou Z, Yao H P, et al. Spectrum sensing using collabora tire bearnforming for Ad Hoe cognitive radio networks[C]//Proc of the International Symposium on Communications and In forma tion Technologies , 2010:1196 - 1199.
  • 5Ghaserni A, Sousa E S. Spectrum sensing in cognitive radio net works: requirements, challenges and design trade-offs [J] IEEE Communications Magazine, 2008, 46 (4) : 32 - 39.
  • 6Lim Y, Park J, Sung Y. Upper bound for the loss of energy de- tection of signals in multi-path fading channels[J]. IEEE Signal Processing Letters, 2009, 16(11): 949- 952.
  • 7Tandra R, Sahai A. SNR walls for signal detection[J].IEEE Journal of Selected Topics in Signal Processing, 2008, 2 (l) : 4-17.
  • 8Sun C H, Zhang W, Letaief B. Cooperative spectrum sensing for cognitive radios under bandwidth constraints [C]//Proc. of the Wireless Communications and Netzvorking Conference, 2007 : 1 - 5.
  • 9Chen D, Li J D, Ma J. Cooperative spectrum sensing under noise uncertainty in cognitive radio[C]//Proc, of the Wireless Communi- cations, Networking and Mobile Computing, 2008 : 1 - 4.
  • 10Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications[C]//Proc, of the IEEE Corn munications Surveys and Tutorials, 2009 : 116 - 130.

共引文献27

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部