期刊文献+

基于非负矩阵分解的托攻击检测算法 被引量:1

Shilling attacks detection algorithm based on nonnegative matrix factorization
下载PDF
导出
摘要 针对现有的无监督检测算法对正常用户误检率较高的问题,提出了一种基于矩阵分解的托攻击检测算法。对评分矩阵采用非负矩阵分解技术提取出用户的特征。采用K-means聚类方法对提取出的用户特征聚类,得到初始正常用户集和初始托用户集。利用初始正常用户集的特征对初始托用户集进行二次分类,进一步提高托攻击用户检测的准确率。实验结果表明,所提出的检测算法与其他检测算法相比较能够更有效地检测出托攻击。 The existing unsupervised detection algorithms have a high misjudgment rate for normal user.To solve this problem,a method for detecting shilling attack based on nonnegative matrix factorization is proposed.Firstly,features of the user are extracted from the nonnegative matrix factorization technique.Secondly,the K-means clustering method is used to extract the initial normal user set and the initial shilling attack set.Finally,using features of initial normal user set classifies the initial shilling attack set,to detect shilling attacks.Experimental results show that this algorithms are more effective in detecting the attacks compared to other algorithms.
作者 方楷强 王靖 FANG Kaiqiang;WANG Jing(School of Computer Science and Technology, Huaqiao University, Xiamen, Fujian 361021, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第10期150-154,159,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61370006) 福建省自然科学基金(No.2014J01237) 福建省教育厅科技项目(No.JA12006) 福建省高等学校新世纪优秀人才支持计划(No.2012FJ-NCET-ZR01) 华侨大学中青年教师科技创新资助计划(No.ZQN-PY116)
关键词 推荐系统 非负矩阵分解 托攻击 检测算法 recommender systems nonnegative matrix factorization shilling attack detection algorithm
  • 相关文献

参考文献2

二级参考文献53

  • 1Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 1T(6): 734-749.
  • 2O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analy- sis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377.
  • 3O'Mahony M P, Hurley N J, Silvestre G C M. Detecting noise in recommender system databases. In: Proceedings of the llth International Conference on Intelligent User Inter- faces. Sydney, Australia: ACM, 2006. 109-115.
  • 4Lam S, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 5Su X, Khoshgoftaav T M. A survey of collaborative filtering techniques. Advances in Artil~cial Intelligence, 2009, 2009: 1-20.
  • 6Mobasher B, Burke R, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 2007, 7(4): 1-40.
  • 7Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63.
  • 8O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor se- lection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387.
  • 9Sandvig J J, Mobasher B, Burke R. Impact of relevance measures on the robustness and accuracy of collaborative fil- tering. In: Proceedings of the 8th International Conference on E-commerce and Web Technologies. Berlin, Germany: Springer, 2007. 99-108.
  • 10Sandvig J J, Mobasher B, Burke R. Robustness of collab- orative recommendation based on association rule mining. In: Proceedings of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007. 105-112.

共引文献26

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部