期刊文献+

融入类别信息的图像标注概率主题模型 被引量:6

Image annotation probabilistic topic model fusing class information
下载PDF
导出
摘要 基于概率主题模型的图像标注方法旨在通过学习图像语义进行图像标注,近年来倍受研究人员关注。考虑到类别对图像标注可提供有价值的信息,例如,"高楼"类图像,出现"天空"、"摩天楼"的可能性大于"海水"和"沙滩"。而"海岸"类图像出现"海水"、"沙滩"的可能性要大于"天空"和"摩天楼"。在Corr-LDA模型的基础上利用图像类别来改进图像的标注性能,提出了一个融入类别信息的图像标注概率主题模型。为该模型推导了一个基于变分EM的参数估计算法,并给出了使用该模型标注图像的方法。在Label Me和UIUC-Sport两个真实数据集上验证了提出模型的标注性能要高于其他相比较模型。 The image annotation method based on the probabilistic topic model annotates images by learning the semantic of the image,and researchers pay more and more attention to it in recent years.Class label information can provide the valuable information for image annotation,for example,for images in“tall building”class,annotating“sky”,“skyscraper”is more possible than annotating“sea”and“beach”.However,for images in“coast”class,annotating“sea”,“beach”is more possible than annotating“sky”and“skyscraper”.This paper proposes an image annotation probabilistic topic model fusing class information which uses class information to promote image annotation.And it derives a parameters estimation algorithm based on the variational EM algorithm,as well as gives the method annotating the new images.The experimental results on LableMe and UIUC-Sport datasets show that the image annotation performance of the proposed model is better than other contrastive models.
作者 曹洁 罗菊香 李晓旭 CAO Jie;LUO Juxiang;LI Xiaoxu(College of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China;Gansu Manufacturing Informatization Engineering Research Center, Lanzhou 730050, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第10期187-192,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61263031) 甘肃省自然科学基金(No.1310RJZA034)
关键词 图像标注 图像类别 变分EM Corr-LDA模型 image annotation image class variational expectation maximization Corr-LDA model
  • 相关文献

参考文献2

二级参考文献36

  • 1Carneiro G, Chan A B, Moreno P J, Vasconcelos N. Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.
  • 2Mori Y, Takahashi H, Oka R. Image-to-word transformation based on dividing and vector quantizing images with words. In: Proceedings of the International Workshop on Multimedia Intelligence Storage and Retrieval Management. Orlando, USA: Springer, 1999. 1-9.
  • 3Zhang Q N, Izquierdo E. Adaptive salient block-based image retrieval in multi-feature space. Image Communication, 2007, 22(6): 591-603.
  • 4Jeon J, Lavrenko V, Manmatha R. Automatic image anno- tation and retrieval using cross-media relevance models. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. Toronto, Canada: ACM, 2003. 119-126.
  • 5Liu J, Wang B, Lu H, Ma S. A graph-based image annotation framework. Pattern Recognition Letters, 2008, 29(4): 407-415.
  • 6Kokkinos I, Maragos P. Synergy between object recognition and image segmentation using the expectation-maximization algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1486--1501.
  • 7Jung J J. Exploiting semantic annotation to supporting user browsing on the web. Knowledge-Based Systems, 2007, 20(4): 373-381.
  • 8Fan J P, Gao Y L, Luo H Z, Xu G Y. Statistical modeling and conceptualization of natural images. Pattern Recognition, 2005, 38(6): 865-885.
  • 9Spirkovska L. A Summary of Image Segmentation Techniques, NASA Technical Memorandum 104022, Ames Research Center, USA, 1993.
  • 10Blekas K, Likas A, Galatsanos N, Lagaris I. A spatiallyconstrained mixture model for image segmentation. IEEE Transactions on Neural Network, 2005, 16(2): 494-498.

共引文献15

同被引文献49

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部