期刊文献+

聚多巴胺辅助磁微球固定β-葡萄糖苷酶的制备与应用 被引量:1

Polydopamine-Assisted Preparation and Application of Magnetic Immobilized β-Glucosidase
下载PDF
导出
摘要 通过溶剂热法和改进的St?ber水解法制备了Fe_3O_4@SiO_2磁性纳米粒子,并用透射电镜对纳米粒子进行了表征.采用聚多巴胺辅助法将β-葡萄糖苷酶固定在磁性纳米粒子上.具体考察了加酶量、多巴胺质量浓度和固定化时间等因素对酶活和酶固定率的影响规律,获得了β-葡萄糖苷酶固定化的最适条件.结果表明,当加酶量为50,U/g、多巴胺质量浓度为1.6,mg/m L、固定化为24,h时,所制备的固定化β-葡萄糖苷酶活力为25.01,U/g,明显优于传统戊二醛交联固定的β-葡萄糖苷酶活力. The Fe3O4@SiO2nanoparticles(NPs)were prepared through solvothermal and modified Stober methods,and the morphology of the nanoparticles was characterized by TEM.β-glucosidase was immobilized onmagnetic nanoparticles with the assistance of polydopamine.In this work,the effects of enzyme loadings,themass concentration of dopamine and the immobilization time on enzyme activity and immobilization yield weresystematically investigated.The results show that the immobilizedβ-glucosidase enzyme activity could reach25.01,U/g when enzyme loading was50,U/g,the mass concentration of dopamine was1.6,mg/mL and the immobilizationtime was24,h.It is superior to the enzyme activity ofβ-glucosidase immobilized by traditional glutaraldehydecrosslinking.
作者 苏荣欣 杨仁俊 齐崴 何志敏 Su Rongxin;Yang Renjun;Qi Wei;He Zhimin(School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China;State Key Laboratory of Chemical Engineering(Tianjin University),Tianjin 300072,China;Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第5期471-476,共6页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(51473115 21276192)~~
关键词 Β-葡萄糖苷酶 固定化 磁性纳米粒子 多巴胺 β-glucosidase immobilization magnetic nanoparticle dopamine
  • 相关文献

参考文献2

二级参考文献54

  • 1张裕卿,王东青,李滨县,梁江华.阶梯生物催化协同提取盾叶薯蓣中薯蓣皂苷元的研究[J].中草药,2006,37(5):688-691. 被引量:15
  • 2Michael E H,Mark F R,Charles E.Cellulase for commodity products from cellulosic biomass[J].Current Opinion in Biotechnology,1999,10(4):358-364.
  • 3Nidetzky B,Steiner S,Hayn M,et al.Cellulose hydrolysis by the cellulases from trichodertna reesei:a new model for synergistic interaction[J].Biochemical Journal,1994,298:705-710.
  • 4Beguin P,Aubert J P.The biological degradation of cellulose[J].FEMS Microbiology Reviews,1994,13:25-58.
  • 5Lenting H B M,Wannoeskerken M M C G.Mechanism of interaction between cellulase action and applied shear force,an hypothesis[J].Journal of Biotechnology,2001,89(2):217-226.
  • 6Lee Y H,Fan L T.Kinetic studies of enzymatic hydrolysis insoluble cellulose Ⅱ[J].Biotechnology and Bioengineering,1983,25:959-966.
  • 7Tomme P,Warren R A,Gillkes N.Cellulose hydrolysis by bacteria and fungi[J].Advances in Microbial Physiology,1995,37:1-8.
  • 8Valjamae D,Sild V,Petterson G,et al.The initial kinetics of hydrolysis by cellobiohydrolase Ⅰ and Ⅱ consistent with a cellulose surface-erosion model[J].European Journal of Biochemistry,1998,253:469-495.
  • 9Lee S B,Park K H,Robyt J F.Inhibition of β-glycosisdases by a carbose analogues containing eellobiose and lactose structures[J].Carbohydrate Research,2001,331:13-18.
  • 10Hemer M L,Melnick M S,Rabinovich M L.Enhancement of the affinity of cellobiohydrolase I and its catalytic domain to cellulose in the presence of the reaction product-cellobiose[J].Biochemistry (Moscow),1999,64:1012-1029.

共引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部