期刊文献+

一种卷积神经网络的优化方法 被引量:11

An Optimization Method of Convolution Neural Network
下载PDF
导出
摘要 近年来,卷积神经网络在目标检测、图像语义分割和图像识别领域取得了一系列重大突破性的成果。但是随着检测率的提升,网络结构也在向着更复杂的方向发展。为解决卷积神经网络结构复杂,样本的检测时间过长的问题,论文提出了一种通过特征图之间的差异性对卷积核数目进行优化的方法,通过计算得到最优卷积核数目,降低网络复杂度,从而加快样本检测的速度,提高泛化能力。实验结果表明,该方法在保证准确率的前提下,提升了检测速度。 In recent years,convolutional neural network has made a series of major breakthrough in target detection,image semantic segmentation and image recognition.But with the improvement of the detection rate,the network structure is becoming more and more complex.In order to solve the problem of complex structure and much time in detecting.In this paper,a method is proposed to optimize the number of convolution kernels by the difference between the feature maps.By calculating the difference between the feature maps,in order to reduce network complexity,increase the detection speed,and improve generalization ability.Experimental results show that the method will increase the detection speed and ensure the accuracy rate.
作者 刘晨 曲长文 周强 李智 LIU Chen;QU Changwen;ZHOU Qiang;LI Zhi(Department of Electronic and Information Engineering,Naval Aeronautical Engineering Institute,Yantai 264001)
出处 《舰船电子工程》 2017年第5期36-40,共5页 Ship Electronic Engineering
关键词 深度学习 卷积神经网络 卷积核 特征图 手写数字识别 deep learning convolutional neural network convolutional kernel characteristic pattern handwritten numeral recognition
  • 相关文献

参考文献3

二级参考文献143

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708.

共引文献1303

同被引文献71

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部