期刊文献+

间冷回热循环发动机间冷器流动换热性能试验 被引量:1

Heat transfer performance of intercooler for an intercooled and recuperated cycle engine
下载PDF
导出
摘要 试验获取了各个状态下间冷器试验件冷气、热气通道进出口气流的总温、总压等参数,进而获得间冷器的流动阻力特性和换热特性。评估了间冷器流动换热性能,并与理论计算结果进行对比分析。结果显示:热气通道流体压力损失系数理论计算值与试验值吻合良好;冷气通道压力损失系数随冷气雷诺数的增加逐渐降低,理论计算值低于试验值;随着冷气流量的增大,间冷器换热效率先降低,当间冷器冷气通道流量大于热气通道流量时,换热效率开始逐渐升高;换热效率理论设计值与试验值误差较小,换热效率随着热气冷气温比的增大先略有升高,随后基本保持不变。 The states of intercooler inlet and outlet air condition for cold and hot sides,including total temperature、total pressure were obtained through experiment to get the intercooler flow resistance and heat transfer characteristics.The heat transfer performance was evaluated and compared with theoretical calculation results.It shows that hot side loss coefficient of theoretical calculation results are in good agreement with test results;the cold side loss coefficient gradually decreases with the increase of Reynolds number,and the theoretical calculation value is lower than the tests value.With the increase of mass flow in cold side,the heat transfer efficiency of intercooler reduces firstly,when the mass flow of cold side is more than that of hot side,the heat transfer efficiency begins to rise.The error between the theoretical valve and tests value is small,and the heat transfer efficiency slightly increases with the ratio of hot and cold air temperature increase,then the efficiency basically remains unchanged.
作者 周雷 方弘毅 朱晓华 陈吉铖 娄德仓 郭文 ZHOU Lei;FANG Hong-yi;ZHU Xiao-hua;CHEN Ji-chen;LOU De-cang;GUO Wen(AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China)
出处 《燃气涡轮试验与研究》 北大核心 2017年第2期11-16,50,共7页 Gas Turbine Experiment and Research
关键词 航空发动机 间冷回热循环 间冷器 CC型换热器 交错角 损失系数 aero-engine intercooled and recuperated cycle intercooler cross-corrugated heat exchanger corrugation angle loss coefficient
  • 相关文献

参考文献2

二级参考文献20

  • 1阴继翔,李国君,丰镇平.交错波纹板原表面换热器通道内对流换热的数值研究[J].西安交通大学学报,2005,39(1):36-40. 被引量:17
  • 2丰镇平.微型燃气轮机技术进展及应用前景.燃气轮机发电技术,2001,3(1):9-16.
  • 3Stasiek J, Collins M W, Ciofalo M, et ak Investigation of flow and heat transfer in corrugated passages: experimental results[J]. Int J Heat Mass Transfer,1996, 39 (1): 149-164.
  • 4Utriainen E,Sunden B. Evaluation of the cross corrugation and some other candidate heat transfer surface for microturbine recupemtors[J].ASME Journal of Engineexing for Gas Turbines and Power, 2002, 124 (4):550-560.
  • 5Stasiek J, Collins M W, Ciofalo M, et al. Investigation of flow and heat transfer in corrugated passages: experimental results [J]. Int J Heat Mass Transfer,1996, 39 (1): 149-164.
  • 6Focke W W, Zachariades J, Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers[J]. Int J Heat Mass Transfer,1985,28 (8)11 469-1 479.
  • 7Ciofalo M, Stasiek J, Collins M W, et al. Investigation of flow and heat transfer in corrugated passages: numerical simulations[J]. Int J Heat Mass Transfer,1996, 39 (1): 165-192.
  • 8Blomerius H, Holsken C, Mitra N K. Numerical investigation of flow field and heat transfer in cross-corrugated ducts[J]. ASME Journal of Heat Transfer,1999, 121 (2):314-321.
  • 9Greiner M, Fischer P F, Tufo M H, et al. Three-dimensional simulations of enhanced heat transfer in a flat passage downstream from a grooved channel[J].ASME Journal of Heat Transfer, 2002, 124 (1) : 169-176.
  • 10Utriainen E,Sunden B. Evaluation of the cross corrugation and some other candidate heat transfer surface for microturbine recupemtors[J]. ASME Journal of Engineexing for Gas Turbines and Power, 2002, 124 (4):550-560.

共引文献18

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部