期刊文献+

安徽省高新技术统计关键指标关联性研究

Research for Correlation with the Statistics Key Indexes of New and High Technology in Anhui Province
下载PDF
导出
摘要 在国内外的研究基础上,结合安徽特有的基本情况,根据安徽省"1+6"政策体系,建立了一套高新技术统计指标体系。以最大依赖性、最大相关性和最小冗余为准则建立模型,选择过滤式特征选择方法的代表算法之一mRMR来选择特征子集,在众多指标中抽取关键指标,并利用数据挖掘中聚类分析方法挖掘指标间潜在的关联性,提出高新技术产业增加值和高新技术企业培育情况是影响一个地区高新技术产业运行情况的重要指标。 Firstly,on the basis of research at home and abroad,and combining the basic situation of Anhui characteristics,this article establishes a set of index system of new and high technology industries.Secondly,to maximize the dependency,maximum correlation and minimum redundancy for the guidelines,this article establishes a model,chooses mRMR to select feature subset which is one of the representative algorithms of the filter,and extract the key indexes in many indexes.Thirdly,data mining the potential correlation between excavated index using the method of clustering analysis.At last,put forward that it is the added value of new and high technology industries and the enterprises which affect the high and new technology industry.
作者 王俊 WANG Jun(Scientific and Technological Information Institute of Anhui Province, Hefei 230011)
出处 《中国科技资源导刊》 2017年第2期88-92,共5页 China Science & Technology Resources Review
基金 安徽省科技攻关计划项目"高新技术统计关键指标挖掘研究"(1301023012) 国家创新发展司委托项目子课题"安徽省企业创新情况调查分析与研究"(ZLY2015123)
关键词 高新技术 数据挖掘 关键指标 相关度 安徽省 new and high technology data mining key indexes relativity Anhui province
  • 相关文献

参考文献5

二级参考文献68

  • 1Jain A K,Duin R P W,Mao J.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
  • 2Blum A,Langley P.Selection of relevant features and examples in machine learning[J].Artif Intell,1997,97:245-271.
  • 3Dash M,Liu H.Feature selection for classifications[J].Intelligent Data Analysis:An Inter J,1997,1:131-156.
  • 4Saeys Y,Inza I,Larra?aga P.A review of feature selection techniques in bioinformatics[J].Bioinformatics,2007,23(19):2507-2517.
  • 5Zhang D,Chen S,Zhou Z H.Constraint score:a new filter method for feature selection with pairwise constraints[J].Pattern Recognition,2008,41(5):1440-1451.
  • 6Naikal N,Yang A Y,Sastry S S.Informative feature selection for object recognition via sparse PCA[C]//2011 IEEE International Conference on Computer Vision(ICCV),2011:818-825.
  • 7Zhang N,Ruan S,Lebonvallet S,et al.Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation[J].Computer Vision and Image Understanding,2011,115(2):256-269.
  • 8Press W H,Teukolsky S A,Vetterling W T,et al.Numerical recipes in C:the art of scientific computing[M].2nd ed.New York:Cambridge University Press,1992.
  • 9Bishop C M.Neural networks for pattern recognition[M].Oxford:Oxford University Press,1995.
  • 10Cover T M,Thomas J A.Elements of information theory[M].[S.l.]:Wiley,1991.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部