期刊文献+

二元周期多维序列的联合复杂度分析 被引量:2

The Research of Joint Linear Complexity of Binary Periodic Multi-Sequences
下载PDF
导出
摘要 线性复杂度是度量密钥流序列安全性的重要指标。倒序序列和对偶序列是两类特殊序列。本文在二元周期倒序单序列的对偶序列已有研究结果的基础上,进一步讨论了二元周期倒序广义对偶多维序列的联合线性复杂度的性质,并明确给出二元周期倒序广义对偶多维序列与原多维序列之间的联合线性复杂度的关系式。针对二元周期倒序广义对偶多维序列的联合重量复杂度也进行了相关讨论。这些结果促进了密钥流多维序列的联合线性复杂度研究的进一步发展,具有一定的应用价值。 Linear complexity is the key index of safety of stream ciphers.Periodic inverted sequences and bit-wise negative sequences are two special kinds of sequences.Basing on the conclusion of binary periodic inverted generalized bit-wise negative sequences,this paper discusses the minimum generate polynomials of binary periodic inverted generalized bit-wise negative multi-sequences.The relation between binary periodic inverted generalized bit-wise negative multi-sequences and original periodic multi-sequences is pointed out and some discussion of the joint weight complexity about them is also presented.The results presented can develop the analysis of the joint complexity of periodic mult i-sequences of stream ciphers.
作者 王菊香 马锦锦 王鑫 WANG Juxiang;MAN Jinjin;WANG Xin(School of Mathematics and Physics, Anhui JianZhu University, Hefei Anhui 230601,China)
出处 《安徽建筑大学学报》 2017年第2期47-49,54,共4页 Journal of Anhui Jianzhu University
基金 安徽省教育厅自然科学一般研究项目(KJ2015JD18) 安徽省教育厅自然科学一般研究项目(KJ2016JD19) 安徽省教育厅自然科学一般研究项目(KJ2016JD24)
关键词 联合线性复杂度 对偶序列 周期倒序序列 流密码 joint linear complexity bit-wise negative sequences periodic inverted sequences stream ciphers
  • 相关文献

参考文献4

二级参考文献32

  • 1王菊香,朱士信.F_p上周期序列S~∞与~∞的线性复杂度分析[J].计算机应用研究,2009,26(2):742-743. 被引量:6
  • 2王丽萍,祝跃飞.F[x]-lattice basis reduction algorithm and multisequence synthesis[J].Science in China(Series F),2001,44(5):321-328. 被引量:4
  • 3DING Cun-sheng, XIAO Guo-zhen, SHAN Wei-juan. The stability theory of stream ciphers[ C]//Lecture Notes in Computer Science. Berlin:Springer, 1991.
  • 4HASSE H. Theorie der hoheren differentiale in einem algebraischen Funktiorienkorper mit vollkommenem Konstantenkorper bei beliebiger Charakteristik [ J ]. Journal Reine Angewandte Mathematik, 1936, 175:50-54.
  • 5NIEDERREITER H. Linear complexity and related complexity measures for sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 2003 : 1- 17.
  • 6MEIDL W, NIEDERREITER H. The expected value of the joint linear complexity of periodic muhisequences[ J]. Journal of Complexity, 2003, 19(1) :61-72.
  • 7MEIDL W, WINTERHOF A. On the joint linear complexity profile of explicit inversive multisequences [ J ]. Journal of Complexity, 2005, 21 (3) :324- 336.
  • 8XING Chao-ping, LAM K Y, WEI Zheng-hong. A class of explicit perfect multi-sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 1999:299- 305.
  • 9XING Cao-ping. Multi-sequences with almost perfect linear complexity profile and function fields over finite fields[ J]. Journal of Complexity, 2000, 16(4) :661-675.
  • 10ARMAND M A. Mulfisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer rings[ J]. IEEE Trans on Information Theory, 2004 , 50 ( 1 ) :220- 229.

共引文献11

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部