期刊文献+

蛋白质分子核磁共振谱峰的特性及其化学位移归属 被引量:3

Characteristics of Protein NMR Resonances and Chemical Shift Assignments
下载PDF
导出
摘要 尽可能完全、准确地归属蛋白质分子的核磁共振(Nuclear Magnetic Resonance,NMR)谱峰,是解析可信赖、高质量的蛋白质三维空间溶液结构的首要条件.自动归属软件的开发和应用,已经方便并加快了蛋白质分子核磁共振谱峰的归属进程.然而,对蛋白质核磁共振研究领域的新手来说,因为缺乏对蛋白质分子的核磁共振谱峰特性的系统认识而可能发生对自动归属结果的错误指认或指认不完全,从而导致蛋白质结构解析的错误或偏差.该文针对蛋白质分子中的核磁共振谱峰特性,比如同位素效应和立体异构等,结合具体的蛋白质分子的核磁共振实验图谱,进行了较为详尽的论述,期望对从事蛋白质核磁共振的研究者在理解蛋白质分子的核磁共振谱峰特性及其归属方面有所裨益. Complete and correct chemical shift assignments of NMR resonances are critical to obtain a reliable and high-quality three-dimensional protein structure with liquid NMR spectroscopy.For experts in the field,the use of auto-assignment software programs can facilitate and expedite the process of protein resonance assignments.However,correct understanding and application of the auto-assignment results can be challenging for those who are new to the field and without sufficient knowledge of NMR resonance characteristics of the atoms in a protein.Incomplete or wrong chemical shift assignments will lead to deviations or even mistakes in the calculation of protein structure.In attempt to provide a better understanding of protein NMR resonances and chemical shift assignments for those are new to this field,we reviewed protein NMR resonance characteristics,such as isotope effect and conformational stereoisomer,in this paper.Examples were given to facilitate understanding.
作者 李双利 朱勤俊 刘买利 杨运煌 LI Shuang-li;ZHU Qing-jun;LIU Mai-li;YANG Yun-huang(State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), Wuhan 430071, China;University of Chinese Academy of Sciences,Beijing 100049, China)
出处 《波谱学杂志》 CAS CSCD 北大核心 2017年第2期137-147,共11页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(21575155)
关键词 液体核磁共振(liquidNMR) 蛋白质 谱峰特性 化学位移归属 liquid NMR, protein resonance characteristics chemical shift assignment
  • 相关文献

参考文献1

二级参考文献132

  • 1Wuthrich K. NMR of Proteins and Nucleic Acids[M]. New York: Wiley-Interscience, 1986.
  • 2Hibler D W, Harpold L, Dell'Acqua M, et al. Isotopic labeling with hydrogen-2 and carbon-13 to compare conformations of proteins and mutants generated by site-directed mutagenesis, I[J].Methods Enzymol, 1989, 177: 74-86.
  • 3Muchmore D C, Mclntosh L P, Russell C 13, et al. Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance[J]. Methods Enzymol, 1989, 177: 44-73.
  • 4Goto N K, Kay L E. New developments in isotope labeling strategies for protein solution NMR spectroscopy[J]. Curt Opin Struct Biol, 2000, 10(5) : 585-592.
  • 5Ohki S-y, Kainosho M. Stable isotope labeling methods for protein NMR spectroscopy[J].Prog Nucl Magn Reson Spectrosc, 2008, 53(4): 208-226.
  • 6Kay L E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution[J]. Prog Biophys Mol Biol, 1995, 63(3): 277-299.
  • 7Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients[J]. Prog Nucl Magn Reson Spectrosc, 1999, 34(2): 93-158.
  • 8Ikura M, Kay L E, Bax A. A novel approach for sequential assignment of ^1H, ^13C, and ^15N spectra of larger proteins: Heteronuelear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin[J]. Biochemistry, 1990, 29(19): 4 659-4 667.
  • 9Kay L E, Ikura M, Tschudin R, et al. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins[J].J Magn Reson, 1990, 89(3): 496-514.
  • 10Powers R, Gronenborn A M, Clore G M, et al. Three-dimensional triple-resonance NMR of ^13C/^15N-enriched proteins using constant-time evolution[J]. J Magn Reson, 1991, 94(1): 209-213.

共引文献7

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部