期刊文献+

形貌可控钒酸铜纳米晶的水热合成及其电化学传感性能(英文) 被引量:1

Hydrothermal synthesis and electrochemical sensing properties of copper vanadate nanocrystals with controlled morphologies
下载PDF
导出
摘要 形貌可控钒酸铜纳米晶在电化学传感应用上具有非常重要的意义。采用简便的水热合成方法,制备出一系列具有不同形貌的的钒酸铜纳米晶(纳米颗粒,纳米带和纳米花)。采用XRD、SEM和循环伏安法(CV)等测试技术,对各种钒酸铜纳米晶产物的物相组成、形貌和电化学性能进行表征。结果表明,Cu_3V_2O_7(OH)_2·2H_2O(CVOH)晶体的形貌可以通过改变铜盐、表面活性剂种类以及溶液p H值进行调控。采用CVOH纳米晶作为活性材料修饰玻碳电极(GCEs)发现,电极对抗坏血酸的响应性能增强。比较三种不同形貌的钒酸铜纳米晶,纳米带状对电极的增强效应最显著。钒酸铜纳米带修饰GCEs电化学感应抗坏血酸,其CV的峰值电流与其浓度呈正比。因此,CVOH纳米晶体可作为检测抗坏血酸的电化学活性材料。 Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various morphologies(e.g.,nanoparticles,nanobelts and nanoflowers)was reported.Phase,morphology and electrochemical performance of the as-synthesized copper vanadate nanocrystals were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and cyclic-voltammogram(CV)techniques.The results revealed that the morphologies of the Cu3V2O7(OH)2·2H2O(CVOH)nanocrystals could be controlled by changing copper salts,surfactants and pH values.The CVOH samples showed enhanced electrochemical response to ascorbic acid.Comparatively,the CVOH nanobelts had the higher electrochemical sensing performance than those of CVOH nanoparticles and nanoflowers.The CVOH-nanobelts-modified GCEs had a linear relationship between the peak currents in their CVs and ascorbic acid concentration.The CVOH nanocrystals can be used as potential electrochemical active materials for the determination of ascorbic acid.
作者 韩桂洪 杨淑珍 黄艳芳 杨晶 柴文翠 张锐 陈德良 Gui-hong HAN;Shu-zhen YANG;Yan-fang HUANG;Jing YANG;Wen-cui CHAI;Rui ZHANG;De-liang CHEN(School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China;School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China)
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1105-1116,共12页 中国有色金属学报(英文版)
基金 Projects(51404213,51404214,51574205,51172211)supported by the National Natural Science Foundation of China Projects(14HASTIT011,154100510003)supported by the Program for University Science and Technology Innovation Talents of Henan Province,China Projects(2013M531682,2014T70682)supported by the China Postdoctoral Science Fund Project(1421324065)supported by the Development Fund for Outstanding Young Teachers of Zhengzhou University,China
关键词 钒酸铜纳米晶 水热合成 电化学传感 抗坏血酸 copper vanadate nanocrystals hydrothermal synthesis electrochemical sensors ascorbic acid
  • 相关文献

参考文献1

二级参考文献18

  • 1Aidoudi F. H., Aldous D. W., Goff R. J., Slawin A. M. Z., Attfield J. P., Morris R. E., Lightfoot P., Nat. Chem., 2011, 3, 801.
  • 2Nakano M., Shibuya K., Okuyama D., Hatano T., Ono S., Kawasaki M., Iwasa Y., Tokura Y., Nature, 2012, 487(7408), 459.
  • 3Marley P. M., Banerjee S., Inorg. Chem., 2012, 51(9), 5264.
  • 4Devi S. S., Muthukumaran B., Krishnamoorthy P., Ionics, 2014, 20(12), 1783.
  • 5Li M. L., Yang X., Wang C. Z., Chen N., Hu F., Bie X. F., Wei Y. J., Du F., Chen G., J. Mater. Chem. A, 2015, 3, 586.
  • 6Zhu K., Yan X., Zhang Y. Q., Wang Y. H., Su A. Y., Bie X. F., Zhang D., Du F., Wang C. Z., Chen G., Wei Y. J., Chem. Plus. Chem., 2014, 79, 447.
  • 7Wei Y. J., Ryu C. W., Chen G., Kim K. B., Electrochem. Sol. Stat. Lett., 2006, 9(11), A487.
  • 8Pan A. Q., Zhang J. G., Cao G. Z., Liang S. Q., Wang C. M., Nie Z. M., Arey B. W., Xu W., Liu D. W., Xiao J., Li G. S., Liu J., J. Mater. Chem., 2011, 21, 10077.
  • 9Zhang S. Y., Li W. Y., Li C. S., Chen J., J. Phys. Chem. B, 2006, 110, 24855.
  • 10Qiu C. G., Liu L.N., Du F., Yang X., Wang C. Z., Chen G., Wei Y. J., Chem. Res. Chinese Universities, 2015, 31(2), 270.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部