摘要
好友推荐机制是繁荣在线社区的有效手段,然而单纯为增加用户数及绑定用户关系的过于频繁的推荐方式会引起用户厌烦.为提升用户体验,本文以大型教学与科研协作平台学者网为研究背景,引入基于角色的协同模型ECARGO对推荐机制进行建模,将好友推荐转化为多对多指派问题,使用带回溯的Kuhn-Munkres算法(KMB)对好友推荐数与接纳数受限情况下最优推荐指派进行了研究与解决.仿真实验表明,该推荐机制友好、高效、精准,能完善在线社区推荐机制,对在线社会健康发展形成助力.
Friend recommendation is an effective method for establishing an online community.However,over frequent recommendations may be the opposite and become nuisances to users.To improve users'experience,a new method of friend recommendation is proposed via many-to-many assignment.This method limits the number of recommended and accepted friends.It takes as the application background the website http://www.scholat.com/,which is a large higher education and research collaboration platform.Recommendation is modeled via Role-Based Collaboration and its E-CARGO model.After that,the Kuhn-Munkres with Backtracking(KMB)algorithm is used to solve the optimal assignment of the proposed method.Simulation experiments show that the proposed recommendation method is friendly,efficient and accurate.It can improve the online community recommendation mechanisms,which can support the development of a virtual society.
作者
张巍
张思勤
宋静静
滕少华
刘艳
Zhang Wei;Zhang Si-qin;Song Jing-jing;Teng Shao-hua;Liu Yan(School of Computers, Guangdong University of Technology, Guangzhou 510006, China;Computer Audit Center,Guangdong Audit Office, Guangzhou 510360, China)
出处
《广东工业大学学报》
CAS
2017年第3期36-42,共7页
Journal of Guangdong University of Technology
基金
国家自然科学基金资助项目(61402118
61673123)
广东省科技计划项目(2013B090200017
2013B010401029
2015B090901016
2016B010108007)
广州市科技计划项目(201508010067
2016201604030034
201604020145)
关键词
在线社区
好友推荐
E-CARGO模型
多对多指派
KMB算法
online community
friend recommendation
E-CARGO
many to many assignment
KMB (Kuhn-Munkres) algorithm