摘要
在多标记研究中,对于标记间相关性的利用已经越来越广泛,从而标记关系的展示就很有必要。相对以往的研究而言,由于多标记数据的高维特征,在训练过程中极为繁琐耗时,稀疏优化就尤为关键;同时标记相关性的内涵没有经过深入挖掘,因此如何更方便有效地进行多标记分类以及研究所有标记之间的相关性显得尤为必要。提出了一种基于两重稀疏约束的多标记社团分类算法,该算法首先将?_1/?_2正则化应用到多标记数据的稀疏表示过程,为后面的研究提供便利条件;其次在多标记关系基础上应用基于?_1范数正则化的社团发现算法,有效地对标记进行社团划分,直观展示出标记关系的内涵。实验证明该方法能够快速、准确地进行多标记分类,并且能够准确展示标记关系。
In multi-label learning,the correlation between labels has been more and more widely used,and it is necessary to show the relationship between them.Compared with previous studies,training process is extremely complicated and time-consuming due to the high dimensionality feature of multi-label data,so sparse optimization becomes essential;meanwhile,the relationship among labels has not been thoroughly excavated,so how to learn multi-label classification and study the correlation between all markers more effectively and conveniently becomes a necessity.This paper presents a method constraint on double sparse representation in multi-label classification,which first uses?1/?2-norm regularization to sparse multi-label data to convenient for following researches,and then applies?1-norm into community detection to effectively detect communities.By this it shows the deep meaning of label relationship.Experiments show that this method can rapidly and accurately study and train multiple labels,and accurately display label connection at the same time.
作者
李娜
潘志松
任义强
李国朋
蒋铭初
LI Na;PAN Zhisong;REN Yiqiang;LI Guopeng;JIANG Mingchu(College of Command Information Systems, PLA University of Science and Technology, Nanjing 210007, China;The 32nd Research Institute of China Electronic Technology Group Corporation, Shanghai 201808, China;SIEMENS Power Automation Co., Ltd., Nanjing 211100, China;Xi’an Communications Institute, Xi’an 710106, China)
出处
《计算机科学与探索》
CSCD
北大核心
2017年第6期959-971,共13页
Journal of Frontiers of Computer Science and Technology
基金
国家自然科学基金No.61473149~~