摘要
针对提高进化神经网络进化时效性,充分利用神经网络的训练数据,提出一种在云计算Hadoop平台环境下,使用进化算法对BP神经网络的权值和网络结构进行优化,通过分布并行计算,提高进化速度和效率。理论分析和实验结果表明,在数据量较大时,该方法能有效地提高神经网络计算精度。
In order to improve the evolutionary timeliness of evolutionary neural network and make full use of the training data of neural network,this paper proposes a method to optimize the weight and network structure of BP neural network by using evolutionary algorithm under the environment of Hadoop platform of cloud computing,meanwhile the evolutionary speed and efficiency is also improved through distributed parallel computing.The theoretical analysis and experimental results show that the method can effectively improve the accuracy of neural network when the amount of data is large.
作者
马宁
李斌
MA Ning;LI Bin(Anhui Radio and TV University, Hefei 230022,China)
出处
《安徽广播电视大学学报》
2017年第2期115-119,共5页
Journal of Anhui Radio & TV University
基金
安徽省优秀青年基金重点项目(项目编号:2013SQRL097ZD)
安徽省高校优秀青年人才支持计划重点项目(项目编号:gxyq ZD2016454)
关键词
并行进化
神经网络
云计算
parallel evolution
neural network
cloud computing