摘要
Fertilizer plays an important role in increasing rice yield. More than half of all fertilizer applied to the field is not taken up, resulting in environmental damage and substantial economic losses. To address these concerns, a low-cost, coated compound fertilizer named "Xiang Nong Da"(XND), requiring only a single basal application, was studied. A two-year field experiment was conducted to test the effects of XND application on rice yield and nitrogen fertilizer use efficiency. An ordinary uncoated compound fertilizer(UNCF), with 20% more nutrients and split application was selected as the control. The yield of XND-treated rice was only 3.1% lower than that of the control, an insignificant difference. There were no significant differences between N use efficiency indices of the two fertilizer treatments except for N partial factor productivity(PFP_N). PFP_Nof XND treatment was 19.7%–23.2% higher than the control, a significant difference. This result indicates that a 20% decrease in N application rate is possible with XND without yield reduction and with savings in both labor and time.
Fertilizer plays an important role in increasing rice yield. More than half of all fertilizer applied to the field is not taken up, resulting in environmental damage and substantial economic losses. To address these concerns, a low-cost, coated compound fertilizer named 'Xiang Nong Da'(XND), requiring only a single basal application, was studied. A two-year field experiment was conducted to test the effects of XND application on rice yield and nitrogen fertilizer use efficiency. An ordinary uncoated compound fertilizer(UNCF), with 20% more nutrients and split application was selected as the control. The yield of XND-treated rice was only 3.1% lower than that of the control, an insignificant difference. There were no significant differences between N use efficiency indices of the two fertilizer treatments except for N partial factor productivity(PFP_N). PFP_Nof XND treatment was 19.7%–23.2% higher than the control, a significant difference. This result indicates that a 20% decrease in N application rate is possible with XND without yield reduction and with savings in both labor and time.
基金
supported by the Special Fund for Agro-scientific Research in the Public Interest(201303103)
China Agriculture Research System(CARS-01)