期刊文献+

最小冗余最大分离准则特征选择方法 被引量:6

Method based on minimum redundancy and maximum separability for feature selection
下载PDF
导出
摘要 特征选择是处理高维数据的一项有效技术。针对传统方法的不足,结合F-score与互信息,提出了一种最小冗余最大分离的特征选择评价准则,该准则使所选择的特征具有更好的分类和预测能力;采用二进制布谷鸟搜索算法和二次规划两种搜索策略来搜索最优特征子集,并对两种搜索策略的准确性和计算量进行分析比较;最后,利用UCI数据集进行实验测试,实验结果说明了所提理论的有效性。 Feature selection is an effective technique for analyzing high-dimensional data.To improve the performance oftraditional feature selection methods,a novel criterion function named minimum redundancy and maximum separabilityfor feature selection is proposed by combining the F-score and mutual information.Based on the new criterion function,the features select own a better ability for classification and prediction.Binary cuckoo search algorithm and quadratic programmingalgorithm are adopted to search the optimal subset of features,the accuracy and the amount of computations forfeature selection of these two search strategies are analyzed.Finally,the effectiveness of the proposed principle is verifiedby the experimental results though conducting tests on UCI datasets.
作者 赖学方 贺兴时 LAI Xuefang;HE Xingshi(School of Science, Xi-an Polytechnic University, Xi-an 710048, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第12期70-75,共6页 Computer Engineering and Applications
基金 陕西省软科学研究项目(No.2014KRM28-01) 陕西省教育厅专项科研计划项目(No.16JK1341) 西安市2015基础教育研究重大招标项目(No.2015ZB-ZY04) 西安工程大学研究生创新基金资助项目(No.CX201614)
关键词 高维数据 费希尔得分 搜索策略 特征选择 high-dimensional data F-score search strategy feature selection
  • 相关文献

参考文献4

二级参考文献54

  • 1奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 2LEE M C.Using support vector machine with a hybrid feature selection method to the stock trend prediction[J].Expert Systems with Applications,2009,36(8):10896-10904.
  • 3MALDONADO S,WEBER R.A wrapper method for feature selection using support machines[J].Information Sciences,2009,179(13):2208-2217.
  • 4LIU Y,ZHENG Y F.FS_SFS:A novel feature selection method for support vector machines[J].Pattern Recognition,2006,39 (7):1333-1345.
  • 5HUA J P,TEMBE W D,DOUGHERTY E R.Performance of feature-selection methods in the classification of high-dimensian data[J].Pattern Recognition,2009,42(3):409-424.
  • 6GUNAL S,GEREK O N,ECE D G,et al.The search for optimal feature set in power quality event classification[J].Expert Systems with Applications,2009,36(7):10266-10273.
  • 7WIDODO A,YANG B S.Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J].Expert Systems with Applications,2007,33(1):241-250.
  • 8GUYON I,ELISSEEFF A.An introduction to variable and feature selection[J].Machine Learning Research,2003,3:1157-1182.
  • 9TALAVERA L.An evaluation of filter and wrapper methods for feature selection in categorical clustering[C]// Proceedings of 6th International Symposium on Intelligent Data Analysis.Madrid:Springer,2005:440-451.
  • 10CHEN Y W,LIN C J Combining SVMs with various feature selection strategies[EB/OL].[2009-08-10].http://www.csie.ntu.edu.tw/-cjlin/papere/features.pdf.

共引文献370

同被引文献57

引证文献6

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部