摘要
特征选择在许多领域具有重要作用,提出一种基于混合自适应引力搜索算法的特征选择方法,在最大化分类精度的同时从数据样本中选出最小特征子集。算法设计两种解更新策略进行组合式搜索,引入群体约简方法,有效地平衡算法的全局搜索和局部收敛能力,同时提出自适应调控参数,减少参数设置对算法性能的影响。在七组真实数据集中的实验结果表明,从分类精度、特征子集大小和运行时间三方面比较,提出的方法优于原始算法和已有相近算法,具有良好的综合性能,是一种有效的特征选择方法。
To overcome the premature search convergence and the stagnation situation,in this paper,a novel algorithmbased on hybrid self-adaptive gravitational search algorithm HSA-GSA is proposed.It can not only maximize the classificationaccuracy but also select the best subset of features from the data samples.The proposed algorithm combines twosolution update strategies to search the solutions,and introduces population reduction method,which effectively balancesthe exploration search and exploitation search.Moreover,self-adaptive control parameters are designed to reduce the influenceon the algorithm due to manually setting.The experimental results on seven practical datasets show that the proposedalgorithm HSA has better comprehensive performance with respect to classification accuracy,size of feature subsets andefficiency than original GSA algorithm and similar algorithms.It also proves that the effectiveness of the proposed algorithm
作者
王欣欣
WANG Xinxin(College of Information Engineering, Changchun University of Science and Technology, Changchun 130600, China)
出处
《计算机工程与应用》
CSCD
北大核心
2017年第12期166-171,共6页
Computer Engineering and Applications
基金
国家自然科学基金青年基金资助项目(No.61303113)
吉教"十二五"规划课题(No.GHI4649)
关键词
引力搜索
特征选择
自适应
分类算法
混合优化
gravitational search algorithm
feature selection
self-adaptive
classification method
hybrid optimization