期刊文献+

双搜索人工蜂群算法的彩色图像多阈值分割 被引量:1

Double search equation artificial bee colony algorithm for multi-threshold color image segmentation
下载PDF
导出
摘要 针对彩色图像多阈值分割中普遍存在精度低、速度慢的问题,提出了一种新的基于双搜索人工蜂群(DABC)的彩色图像多阈值分割算法。首先由于人工蜂群算法单一的解搜索公式存在不足,对雇佣蜂和跟随蜂各提出了一种搜索公式,进而对人工蜂群算法的相关参数进行了改进,然后做了DABC算法、全局最优引导人工蜂群算法(GABC)、人工蜂群算法(ABC)、粒子群优化算法(PSO)这四种算法的彩色图像多阈值分割对比实验。实验结果表明,与其他三种算法相比,基于DABC的彩色图像多阈值分割方法在分割的精度和速度上都有明显提高,完全能满足实际的需要。 A novel Double search Artificial Bee Colony algorithm(DABC)for multi thresholding color image segmentationis proposed to solve the low precision and slow segmentation speed.In this method,because of insufficiency inABC regarding its solution search equation,two new search equations are presented to generate candidate solutions in theemployed bee phase and the onlookers phase,respectively.Additionally,some more reasonable artificial bee colony parametersare proposed to improve the performance of the artificial bee colony.Then the proposed algorithm is tested on theimages.The results are compared with that of Gbest-guided Artificial Bee Colony algorithm(GABC),the Artificial BeeColony algorithm(ABC),the Particle Swarm Optimization algorithm(PSO).Compared to the other three multi thresholdingcolor image segmentation methods,the DABC has significantly improved the accuracy and speed,which is fullyable to meet the actual needs.
作者 刘笃晋 贺建英 周思吉 胡月 LIU Dujin;HE Jianying;ZHOU Siji;HU Yue(School of Computer Science, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, China;College of Geophysics, Chengdu University of Technology, Chengdu 610059, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第12期203-207,213,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61152003) 四川省教育厅资助科研项目(No.15ZB0323) 2014年四川省大学生创新创业训练计划项目(No.201410644015)
关键词 双搜索方程 人工蜂群算法 彩色图像 多阈值分割 double search equation artificial bee colony algorithm(ABC) color image multi-threshold segmentation
  • 相关文献

参考文献2

二级参考文献30

  • 1卢志茂,许晓丽,范冬梅,李海燕.二次分水岭和Ncut相结合的彩色图像分割方法[J].华中科技大学学报(自然科学版),2011,39(S2):95-98. 被引量:9
  • 2王祥科,郑志强.Otsu多阈值快速分割算法及其在彩色图像中的应用[J].计算机应用,2006,26(B06):14-15. 被引量:40
  • 3Bernsen J. Dynamic thresholding of gray-level images. In: Proceedings of the 8th International Conference Pattern Recognition. Paris, France: IEEE, 1986. 1251-1255.
  • 4Niblaek W. An Introduction to Digital Image Processing New Jersey: Prentice Hall, 1986. 115-116.
  • 5Taxt T, Flynn P J, Jain A K. Segmentation of document im- ages. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(12): 1322-1329.
  • 6Sauvola J, Pietikainen M. Adaptive document image bina- rization. Pattern Recognition, 2000, 33(2): 225-236.
  • 7Kim I J. Multi-window binarization of camera image for document recognition. In: Proceedings of the 9th Interna- tional Workshop on Frontiers in Handwriting Recognition. Washington D. C., USA: IEEE, 2004. 323-327.
  • 8Huang Q M, Gao W, Cai W J. Thresholding technique with adaptive window selection for uneven lighting image. Pat- tern Recognition Letters, 2005, 26(6): 801-808.
  • 9Tsai Y H. A new approach for image thresholding un- der uneven lighting conditions. In: Proceedings of the 6th IEEE/ACIS International Conference on Computer and Information Science. Melbourne, Australia: IEEE, 2007. 123-127.
  • 10Chou C H, Lin W H, Chang F. A binarization method with learning-built rules for document images produced by cam- eras. Pattern Recognition, 2010, 43(4): 1518-1530.

共引文献23

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部