期刊文献+

一种改进的语音动态组合特征参数提取方法 被引量:4

An Improved Extraction Method of Speech Dynamic Combination Characteristic Parameters
下载PDF
导出
摘要 语音信号窗函数具有减少频谱能量泄露的作用,针对传统的语音加窗函数旁瓣衰减速度慢,信号频谱能量泄露大,不利于说话人识别特征参数提取的缺点,采用一种汉明自卷积窗函数取代汉明窗函数对语音信号预处理。为了进一步提高说话人系统的识别率,文章提出一种基于汉明自卷积窗的的一阶、二阶差分梅尔倒谱系数(MFCC)改进的动态组合特征参数方法。用高斯混合模型进行仿真实验,实验结果证明,用该方法提取的特征参数运用于说话人识别系统,相比于传统的MFCC说话人识别系统,其识别率大大提高。 Speech signal windowing function can reduce spectral energy leakage,focusing on the shortcoming of the side lobe decay of traditional speech windowing function and the large energy leakage of signal spectrum,which it is disadvantage to the feature extraction of speaker recognition,a new window function is adopted to preprocess to the speech signal based on Hamming autocorrelation window function instead of Hamming window.In order to improve the recognition rate of speaker system,A new improved method is proposed in the paper to combine the first and second order of Mel Cepstral Coefficient combination dynamic feature parameters based on Hamming autocorrelation window function.The experimental results show that the proposed method can get better he recognition rate in Gaussian Mixture Model than that of the traditional speaker system with MFCC characteristic parameters,which can be applied to the speaker recognition system.
作者 钟浩 鲍鸿 张晶 ZHONG Hao;BAOHong;ZHANG Jing(School of Automation袁Guangdong University of Technology Guangzhou 510006,China;Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China)
出处 《电脑与信息技术》 2017年第3期4-7,共4页 Computer and Information Technology
基金 广东省科技计划项目(项目编号:2013B040401015)
关键词 说话人识别 汉明自卷积窗 梅尔倒谱系数 高斯混合模型 speaker recognition Hamming self-convolution window Mel Cepstral Coefficient Gaus-sian Mixture Model
  • 相关文献

参考文献9

二级参考文献90

  • 1王伟,邓辉文.基于MFCC参数和VQ的说话人识别系统[J].仪器仪表学报,2006,27(z3):2253-2255. 被引量:30
  • 2赵云鹏.MATLAB串口通信在数据采集中的应用[J].微计算机信息,2006,22(01S):111-112. 被引量:25
  • 3李朝晖,迟惠生.听觉外周计算模型研究进展[J].声学学报,2006,31(5):449-465. 被引量:22
  • 4陈明义,余伶俐,朱晗,周昆湘.基于特征参数融合的语音情感识别方法[J].微电子学与计算机,2006,23(12):168-171. 被引量:10
  • 5von Bekesy G. Concerning the pleasures of observing, and the mechanics of the inner ear pC]// Nobel Lectures in Physiology or Medicine. Amsterdam, Netherlands: Elsevier Science, 1964: 722-746.
  • 6Lyon R F, Mead C. An analog electronic cochlea [J]. Acoustics, Speech, and Signal Processing, 1988, 36(7) : 1119- 1134.
  • 7Patterson R D, Moore B C J. Auditory filters and excitation patterns as representations of frequency resolution [C]// Frequency Selectivity in Hearing. London: Academic Press, 1986: 123- 177.
  • 8Johannesma P I M. The pre-response stimulus ensemble of neurons in the cochlear nucleus [C]//Proc of the Symposium on Hearing Theory. Eindhoven, Netherlands : IPO, 1972: 58 - 69.
  • 9Glasberg B R, Moore B C J. Derivation of auditory filter shapes from notched noise data [J]. Hearing Research, 1990, 47(1): 103- 108.
  • 10Martin C. Modelling auditory processing and organisation [D]. Sheffield, Britain: University of Sheffield, 1991.

共引文献93

同被引文献18

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部