期刊文献+

基于用户行为的Android手机防沉迷系统研究与设计

Design of Phone Anti-obsessed System Based on the User Behavior
下载PDF
导出
摘要 传统防沉迷软件只对用户身份进行识别和管理,没有对于娱乐行为进行分析,不能准确识别娱乐软件。基于用户行为的手机防沉迷系统动态采集用户数据,通过比较用户与软件交互行为的阀值算法判定软件是否属于娱乐软件,并在此基础上限制软件的使用时间。实践证明,该防沉迷系统能够有效地限制青少年使用手机的时间。 Traditional anti-obsessed system is only use for identity management,but it cannot be used for entertainment conduct analysis,and cannot be able to accurately identify entertainment software.This paper design a new mobile phone Anti-obsessed system based on the user behavior.The system can dynamic capture user’s interactive behavior data,and uses these data for detecting whether the software is in the entertainment software classification.From the result of comparing with interaction behavior threshold number of classification,mobile phone Anti-obsessed system can decide whether to block the use of entertainment software.Experiment showed that phone Anti-obsessed system could effectively limit the time playing mobile phone by young people and provide a new approach to prevent adolescent's indulged mobile phone application.
作者 潘夏福 PAN Xia-fu(Public Safety Technology Department of Hainan Vocational College of Political Science and Law, Haikou 571100, China)
出处 《电脑与信息技术》 2017年第3期14-17,共4页 Computer and Information Technology
基金 2015年海南省自然科学基金(项目编号:20156244)
关键词 ANDROID 防沉迷系统 用户行为 App分类 Android anti-obsessed system user behavior App classification
  • 相关文献

参考文献6

二级参考文献60

  • 1苏璞睿,冯登国.基于进程行为的异常检测模型[J].电子学报,2006,34(10):1809-1811. 被引量:17
  • 2YE Nong. A Markov chain model of temporal behavior for anomaly detection:Proc of IEEE Systems, Man,and Cybernetics Information Assurance and Security Work- shop[C]. New York: IEEE Computer Society, 2000: 171-174.
  • 3WARRENDER C, FORREST S, PEARLMUTTER B. Detecting intrusion using systemcalls: alternative data models : Proc of IEEE Symposium on Security and Pri- vacy[C]. Washington DC: IEEE Computer Society, 1999:133-145.
  • 4Mariantonietta La Polla, Febio Martinelli, Daniele Sgandurra. A survey on security for mobile devices [J]. IEEE Communications Surveys & Tutorials, 2013, 15 (1): 446-471.
  • 5Thomas Blosing, Leonid Batyuk, Aubrey Derrick Schmidt, et al. An Android application sandbox system for suspicious soft- ware detection [C]//Proceedings of the 5th International Conference on Malicious and Unwanted Software. USA: IEEE Computer Society Press, 2010: 55-62.
  • 6Asaf Shabtai, Robert Moskovitch, Yuval Elovici, et al. Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey [J]. Information Security TechnicalReport, 2009, 14 (1): 16-29.
  • 7Asaf Shabtai, Yuval Fledeh Uri Kanonov, et al. Google Android: A comprehensive security assessment [J]. IEEE Security and Privacy, 2010, 8 (2): 35-44.
  • 8Adrienne Porter Felt, Matthew Finifter, Erika Chin, et al. A survey of mobile malware in the wild [C]//Proceedings of the 1 st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. New York: ACM Press, 2011: 3-14.
  • 9Zheng Min, Patti& P C Lee, John C S Lui. ADAM: An automarie and extensible platform to stress test android anti-virus systems [C] //Proceefflngs of the 9th International Conference on Detection of Imrusions and Malware and Vulnerability Assessment. Berlin Heidelberg.. Springer-Verlag, 2012: 82-101.
  • 10Zhou Yajin, Jiang Xuxian. Dissecting Android malware: Chara-cterization and evolution [C] //Proceedings of the IEEE Symposium on Security and Privacy. USA: IEEE Computer Society Press, 2012: 95-109.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部