期刊文献+

深度学习在农村金融行业风险管理中的应用研究 被引量:2

下载PDF
导出
摘要 农村金融在我国金融系统中占有重要地位,渠道广、客户多、数据大,且由于其金融主体特殊,农村经济及产业特殊,金融工具,组织结构等都较为复杂,客户群体防范意识和防范水平不高,金融业务存在巨大风险。而且,在许多欺诈案件中,欺诈分子更加狡猾,欺诈手段和技术更加先进,欺诈行为呈现集团化、流水化的特征。深度学习是近些年来学术界和工业界都较为关注的一种机器学习模型,适用于大数据、复杂场景下的数据分析和挖掘,同样在风险预警、风险管理中也有重要应用。该文结合农村金融系统中风险管理方面的实际情况,论述了深度学习在其中发挥的重要作用,同时也为同行业解决同样问题提供了一种新的思路。
出处 《科技资讯》 2017年第15期248-249,共2页 Science & Technology Information
  • 相关文献

参考文献3

二级参考文献111

  • 1HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 2BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 3VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 4LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 5TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 6SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 7TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 8JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.
  • 10LEE H, PHAM P, LARGMAN Y, et at. Unsupervised feature learn- ing for audio classification using convolutional deep belief networks [C ]//Advances in Neural Information Processing Systems. Cam- bridge : MIT Press ,2009 : 1096-1104.

共引文献301

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部