期刊文献+

基于SVM+GA的客运车辆到站时间预测 被引量:3

Coach Bus Arrival Time Prediction Based on SVM and GA
下载PDF
导出
摘要 准确的客运车辆到站预测是城市智慧交通的基础服务,有助于减少信息盲区,优化车辆运营调度。提出了一种基于SVM的到站预测模型,考虑道路因素、大型节假日、天气、路况、运行距离、运行时间、排班信息七个因素的影响,改进道路路段为道路类型因素,使模型更适合于客运车辆。在此基础上,用遗传算法做参数寻优提高模型训练效率。以深圳-广州的客运班车GPS数据完成实验,对比证明SVM+GA模型应用于客运车辆行程时间预测具有更好的适应客性,准确高效。 Accurate coach arrival time prediction is one of the infrastructure services in intelligent urban transportation,whichhelps reducing information blind-spots and optimizating coach bus schedule.An arrival time prediction model for coach bus is pro?posed.It has7features including road factors,holidays,weather,road conditions,distance,time,scheduling information.And itchange straditional feature road segments to road type factor,in order to make the model more suitable for coach.Besides,this pa?per uses genetic algorithm to find model??s optimal parameters.The experimental results of coach bus from Shenzhen to Guangzhoushow that the proposed model is more suitable to predict the coach arrival time with higher prediction accuracy.
作者 张昕 姜佳佳 刘进 ZHANG Xin;JIANG Jiajia;LIU Jin(Shenzhen e-Traffic Technology Co.,Ltd,Shenzhen 518040;School of Information,Wuhan University of Technology,Wuhan 430070;School of Automation,Wuhan University of Technology,Wuhan 430070)
出处 《计算机与数字工程》 2017年第6期1062-1066,1085,共6页 Computer & Digital Engineering
基金 国家自然科学基金青年项目(编号:4140012165)资助
关键词 智慧交通 客运车辆行程时间 支持向量机 遗传算法 intelligent transportation,coach bus travel time,SVM,GA
  • 相关文献

参考文献5

二级参考文献56

  • 1于滨,杨忠振,林剑艺.应用支持向量机预测公交车运行时间[J].系统工程理论与实践,2007,27(4):160-164. 被引量:31
  • 2Dailey D,Maclean S,Cathey F,et al.Transit vehicle arrival prediction:Algorithm and large-scale implementation[J].Journal of the Transportation Research Board,2001,1771,46-51.
  • 3Shalaby A,Farhan A.Bus Travel Time Prediction Model for Dynamic Operations Control and Passenger Information Systems,CD-ROM,The 82nd Annual Meeting of the Transportation Research Board,Washington,DC.2003.
  • 4Park D,Rilett L R.Forecasting freeway link travel times with a multilayer feedforward neural network[J].Computer-Aided Civil and Infrastructure Engineering,1999,14(5):357-367.
  • 5Ding Y,Chien S.The Prediction of Bus Arrival Times with Link-Based Artificial Neural Networks[C]//Proceedings of the International Conference on Computational Intelligence & Neurosciences (CI&N)-Intelligent Transportation Systems,Atlantic City,New Jersey,2000,730-3.
  • 6Chien I-Jy,Ding Y,Wei C.Dynamic bus arrival time prediction with artificial neural networks[J].Journal of Transportation Engineering,ASCE,2002,128(5):429-38.
  • 7Chen M,Liu X B,Xia J X,et al.A dynamic bus-arrival time prediction model based on APC data[J].Computer-Aided Civil and Infrastructure Engineering,2004,19:364-376.
  • 8Lawrence S,Giles C L,Tsoi A -C.Lessons in Neural Network Training:Overfitting May Be Harder Than Expected[C]//Proceedings of the Fourteenth National Conference on Artificial Intelligence,Mento Park,CA:AAAl Press.1997,AAAl-97,540-545.
  • 9Moody J E.The effective number of parameters:An analysis of generalization and regularization in nonlinear learning systems[J].NIPS,1992,4:847-854.
  • 10Sarle W S.Stopped Training and Other Remedies for Overfitting[C]//Proceedings of the Twenty-seventh Symposium on the Interface of Computing Science and Statistics,1995,352-360.

共引文献50

同被引文献19

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部